跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黎明當
研究生(外文):Le Minh Duong
論文名稱:添加結晶型胺基酸在溫度和延遲投餵對點帶石斑氨排泄和血中氨之影響
論文名稱(外文):Effect of crystalline amino acids supplementation, temperature and delay feeding on ammonia excretion and plasma ammonia in orange-spotted grouper Epinephelus coioides
指導教授:劉擎華劉擎華引用關係
指導教授(外文):Chyng-Hwa Liou
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:92
中文關鍵詞:保護型及結晶型胺基酸點帶石斑溫度延遲投餵總氨排泄血中氨
外文關鍵詞:coat and crystalline AA supplementationorange-spotted groupertemperaturedelay feedingtotal ammonia excretionplasma ammoniaEpinephelus coioides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
溫度和延遲投餵對餵食添加結晶胺基酸飼料點帶石斑的氨排泄和血中氨之影響。所有飼料配方中粗蛋白和粗脂質含量分別為47%和10%。在第一個試驗中,共有35隻石斑魚(388.1±28.3克),投餵五種不同飼料,每餐1%體重,每日兩餐。在第一次投餵後兩個小時再投餵第二次。測試三個溫度(22, 25, or 28oC)。投餵後 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16,20,及24小時採水,分析水中氨氮。結果顯示,每個飼料處理組中,溫度上升使總排氨量增加。植物性蛋白組(空白組)飼料有最高的排氨量,其次是添加結晶型胺基酸的各組別,最低的是控制組。 以相似的步驟進行第二次試驗,共42隻石斑魚(432.6±35克)投餵添加不同型式胺基酸的六種不同的飼料,每餐投餵1%體重,水溫維持28℃。其他步驟同第一個試驗。我們發現無論空白組添加脂肪保護型或結晶型賴氨酸與蛋氨酸的總排氨量與添加魚粉的飼料組(對照組)相比都沒有顯著的差異。同時,只添加脂肪保護型蛋氨酸的組別與只添加保護型賴氨酸或兩種混和的組別相比並不會降低植物性蛋白之胺基酸的利用率。
使用與第二次試驗的魚與飼料來進行第三次試驗。我們在投餵後每兩個小時測定血中氨持續24小時。所有的處理組的血中氨皆在投餵後增加。添加結晶型賴氨酸與蛋氨酸的組別有最高的血中氨。本試驗的血中氨是有浮動的。 因此,溫度與結晶型胺基酸的添加會影響總氨的排泄,而延遲投餵則無明顯影響,在植物蛋白為主的飼料中添加保護型或結晶型賴氨酸和蛋氨酸有相似的效果,未顯示明顯差異。
The effect of crystalline amino acids supplementation, delay feeding, and temperature on ammonia excretion and plasma ammonia in orange-spotted grouper Epinephelus coioides was determined. All diets were formulated to contain 47% of and 10% of crude protein and crude lipid, respectively.
In the first experiment, a total of 35 groupers (388.1±28.3 g), which was fed five different diets, namely control, basal, CAA1, CAA2, and CAA3, at 1% of body weight with 2-meal daily, the second meal was delayed after the first meal 2 h, was reared individually in 70-L glass tank at 3 different temperature levels (22, 25, or 28oC). Water sample was collected at 0 (after feeding), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 20, and 24 h postprandial to analyze ammonia. The results indicated that the total ammonia excretion increased significantly with the rise of temperature in all treatments, whereas basal diet, mainly plant-based protein, had a highest concentration of ammonia excretion, followed by crystalline amino acids substitution diets, and the lowest one was in control treatment.
The similar procedure was carried out for the second trial. A total of 42 groupers (432.6±35 g) was fed six different diets, which were control, basal, Cryst., coat, Coat-L/Cryst-M, and Coat-M/Cryst-L, at 1% of body weight with only 1 meal per day at 28oC. The result introduced that the total ammonia excretion of both supplemental fat-coated lysine and methionine or crystalline lysine and methionine was no significant higher than that of fishmeal-based diet. Meanwhile, the fish, which fed the diet supplemented using fat-coated methionine and crystalline lysine, could not utilized effectively AAs from intact plant protein as compared with fat-coated lysine and crystalline methionine inclusion diet.
Using the fish and the feeds of the second experiment, third trial was conducted to determine plasma ammonia in grouper at 2 h interval for the first 12 h and 4 h interval for the last 12 h after feeding. Plasma ammonia increased immediately after meal in all treatments, which the highest point was of crystalline lysine and methionine supplementation treatment. The pattern of plasma ammonia was fluctuated during the first 12 h, and went to baseline at 20 h post feeding.
Hence, the temperature level and crystalline amino acids supplementation can influence the total ammonia excretion, while delay feeding seems to have no effect. The substitution of fat-coated and crystalline lysine and methionine had similar effectiveness on plant-based protein diet, but the supplementation of a mixture of fat-coated methionine and crystalline lysine seem to have very little positive effect on the total ammonia excretion of orange-spotted groupers.
ACKNOWLEDGMENTS .......................................................................... i
ABSTRACT............................................................................................... ii
ABSTRACT.............................................................................................. iv
TABLE OF CONTENTS .......................................................................... vi
LIST OF TABLES.................................................................................... ix
LIST OF FIGURES ................................................................................... x
INTRODUCTION ..................................................................................... 1
OBJECTIVE ............................................................................................. 4
LITERATURE REVIEW .......................................................................... 5
Taxonomic classification of and geographical distribution of Orange-spotted grouper (Epinephelus coioides) ..................................................... 5
Nutrient requirements of groupers ............................................................ 6
Protein requirements ................................................................................. 6
Amino acids requirement .......................................................................... 7
Researches on plant-based protein diets replacement ............................... 8
Researches on crystalline and/or coated amino acids supplementation... 10
Researches on ammonia excretion and plasma ammonia........................ 12
MATERIALS AND METHODS ............................................................. 16
Materials.................................................................................................. 16
Animals .................................................................................................... 16
Analytical Chemicals ............................................................................... 16
Feedstuff ingredients ............................................................................... 16
Methods ................................................................................................... 17
Experiment 1 ........................................................................................... 17
Diet formulation (Table 1) ....................................................................... 17
Effects of cleaning or not and antibiotic treating in system on ammonia excretion in 24h ....................................................................................... 18
With Fish.................................................................................................. 18
Without fish .............................................................................................. 19
Effect of temperature, delay feeding, and crystalline amino acids supplementation on ammonia excretion .................................................. 19
Experiment 2 ........................................................................................... 20
Diet formulation (Table 2) ....................................................................... 20
Effect of coated and crystalline amino acids supplementation on ammonia excretion .................................................................................................. 21
Experiment 3 ........................................................................................... 21
Diet formulation (Table 2) ....................................................................... 21
Effect of amino acid sources on plasma ammonia ................................... 21
Experiment 4 ........................................................................................... 22
Proximate composition of feed analysis ................................................... 22
Moisture .................................................................................................. 22
Crude protein .......................................................................................... 22
Crude lipid............................................................................................... 23
Ash ......................................................................................................... 24
Analysis of water ammonia...................................................................... 24
The percentage of nitrogen excretion per nitrogen retention .................. 25
Analysis of plasma ammonia ................................................................... 25
Statistical analysis.................................................................................... 26
RESULTS ................................................................................................ 27
Effects of cleaning or not and antibiotic treating in system on ammonia excretion in 24h ....................................................................................... 27
Effect of crystalline amino acids supplementation, delay feeding, and temperature on ammonia excretion......................................................... 27
Effect of fat-coated and crystalline amino acids supplementation on ammonia excretion .................................................................................. 29
Effect of fat-coated and crystalline amino acids supplementation on plasma ammonia ...................................................................................... 30
DISCUSSIONS ........................................................................................ 32
The total ammonia nitrogen lost in cleaning tank was similar to antibiotic treating aquarium.................................................................................... 32
The total ammonia nitrogen excretion increased with the rise of temperature ............................................................................................. 32
Fat-coated and crystalline AA supplementation can reduce the total ammonia nitrogen excretion in plant-based protein source diet.............. 35
Plasma ammonia concentration was fluctuated at the first 12 h post feeding ..................................................................................................... 37
The replacement of 61% of fishmeal using plant protein source caused a significant increase in the total ammonia nitrogen excretion .................. 39
The total ammonia nitrogen excretion of groupers fed 1 meal were lower than that of groupers fed 2 meals ............................................................ 41
CONCLUSION........................................................................................ 43
REFERENCES ........................................................................................ 44
of coated crystalline amino acids on growth performance and body composition of juvenile kuruma shrimp Marsupenaeus japonicas. Aquaculture Nutrition 10, 309–316. Alava, V.R., Priolo, F.M.P., Arnaiz, M., and Toledo, J.D., 2004. Amino and fatty acid profiles of wild-sourced grouper E. coioides broodstock and larvae. In: Advances in Grouper Aquaculture, 110, 53-54. Ambardekar, A., and Reigh, R.C., 2007. Sources and utilization of amino acids in channel catfish (Ictalurus punctatus) diets: a review. National American Journal of Aquaculture 69, 174–179.
Ambardekar, A., Reigh, R.C., and Williams, M.B., 2009. Absorption of amino acids from intact dietary proteins and purified amino acidsupplements follows different time-courses in channel catfish (Ictalurus punctatus). Aquaculture 291, 179-187. Andersson, D., 2004. The ways in which bacteria resist antibiotics. A multidisciplinary meeting at the dag Hammarskjöld Foundation Uppsala, Sweden, 5–7 May 2004. AOAC, 1998. Official Methods of Analysis of AOAC International: 16th edition. AOAC international, USA. Ballantyne, J.S., 2001. Amino acid metabolism. In: Wright, P.A., Anderson, P.M. (Eds.). Nitrogen Excretion. Fish Physiology 20, 77–108.
and feeding level. Aquaculture 161, 55–65. Boonyaratpalin, M., 1997. Nutrient requirentments of marine food fish cultured in South East Asia. Aquculture 151, 283-313. Britz , P.J., Bacela, N., and Hecht, T., 1997. Can crystalline arginine be used to quantify the arginine requirement of abalone? Aquaculture 157, 95-105. Bureau, D.P., 2004. Factors affecting metabolic waste outputs in fish. Memorias del VII Simposium Internacional de Nutrición Acuícola, Mexico. Campbell, J.W., 1991. Excretory nitrogen metabolism. In: Prosser CL (ed) Experimental and metabolic animal physiology. Comparative animal physiology 4, 277–324. Chen, C.H., 1995. Total sulfur amino acid requirement and its effect on nitrogen metabolism for grassy grouper Epinephelus malabaricus. National Taiwan Ocean University, Taiwan R.O.C., 135. Chen, H.Y., and Tsai, J.C., 1994. Optimal dietary protein level for the growth of juvenile grouper, Epinephelus malabaricus, fed semi-purified diets. Aquaculture 119, 265-271. Chen, J.C., Nan, F.H., Cheng, S.Y., and Sheen, S.S., 1993. Effects of ambient ammonia on ammonia-N and protein concentration in haemolymph and ammonia-N excretion of Penaeus chinensis. Mar. Ecol. Prog. Ser. 98, 2003-2008.
Cheng, Z.J., Hardy, R.W., and Usry, J.L., 2003. Plant protein ingredients with lysine supplementation reduce dietary protein level in rainbow trout Oncorhynchus mykiss diets, and reduce ammonia nitrogen and soluble phosphorus excretion. Aquaculture 218, 553-565. Chi, S.Y., Tan, B.P., Lin, H.Z., Mai, K.S., Ai, Q.H., Wang, X.J., Zhang, W.B., Xu, W., and Liufu, Z.G., 2011. Effects of supplementation of crystalline or coated methionine on growth performance and feed utilization of pacific while shrimp, Litopenaeus vannamei. Aquaculture Nutrition 17, 1-9. Cowey, C. B., and Walton, M. J., 1988. Studies on uptake of 14C-amino acids derived from both dietary 14C-protein and dietary 14C-amino acids by rainbow trout. Journal of Fish Biology 33, 293-305. Cui, Y., and Wootton, R.J., 1988. Bioenergetics of growth of a cyprinid, Phoxinus phoxinus: The effect of ration, temperature and body size on food consumption, faecal production and nitrogenous excretion. J. Fish Biol. 33, 431–444. Dabrowski, K., 1983. Comparative aspects of protein digestion and amino acid absorption in fish and other animals. Comparative Biochemistry and Physiology 74, 417– 426. Dabrowski, K., and Dabrowska, H., 1981. Digestion of protein by rainbow trout (Salmo gairdneri Rich) and absorption of amino acids within the alimentary tract. Comparative Biochemistry and Physiology 69, 99–111.
Deng, D.F., Refstie, S., Hemre, G.I., Crocker, C.E., Chen, H.Y., Cech Jr., J.J., and Hung, S.S.O., 2000. A new technique of feeding, repeated
sampling of blood and continuous collection of urine in white sturgeon. Fish Physiology and Biochemistry 22, 191–197. Deshimaru, O., 1976. Studies on a purified diet for prawn: VI. Absorption rate of amino acid in amino acid test diet. Bull. Jpn. Soc. Sci. Fish. 42, 331– 335. Dosdat, A., Servais, F., Metailler, R., Huelvan, C., Desbruyeres, E., 1996. Comparison of nitrogenous losses in five teleost fish species. Aquaculture 141, 107–127. Duong, N.D., 2008. Effects of delayed supplementation of crystalline essential amino acid on the growth and feed utilization of juvenile orange-spotted grouper Epinephelus coioides. National Taiwan Ocean University, Taiwan R.O.C. FAO, 2006. State of World Fisheries and Aquaculture. Rome, Italia. FAO, 2011. Aquaculture Statictical. Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M., and Charnov E.L., 2001. Effects of size and temperature on metabolic rate. Science 293, 2248–2251. Goff, J.B., and Gatlin, D.M., 2004. Evaluation of different sulfur amino acid compounds in the diet of red drum Sciaenops ocellatus and sparing value of cystine for methionine. Aquaculture 241, 465-477. Gómez-Requeni, P., Mingarro, M., Calduch-Giner, J.A., Médale, F., Martin, S.A.M., Houlihan, D.F., Kaushik, S., and Pérez-Sánchez, J., 2004. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fishmeal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 232, 493– 510.
Gowen, R.J., and Bradbury, N.B., 1987. The ecological impact of salmonid farming in coastal waters: a review. Oceanogr. Mar. Biol. Ann. Rev. 25, 563–575. Hochachka, P.W., and Somero, G.N., 2002. Biochemical adaptation: Mechanism and processing physiological evolution. Oxford University Press, New York. Ip, Y.K., Chew, S.F., and Randall, D.J., 2001. Ammonia toxicity, tolerance, and excretion. In: Wright PA, Anderson PM, editors. Nitrogen Excretion. Fish Physiology 20, 109–148. Kaushik, S.J., 1981. Influence of a rise in temperature on the nitrogen excretion of rainbow trout (Salmo gairdneri R.). In: Tiews K (ed) Proc. World Symp. on aquaculture in heated effluents and recirculation systems, vol I. Berlin, pp 77–82. Kaushik, S.J., and Dabrowski, K., 1983. Nitrogen and energy utilization in juvenile carp (Cyprinus carpio) fed casein, amino acids or a protein-free diet. Reprod. Nutr. Dev. 23, 741–754. Kaushik, S.J., and Oliva-Teles, A., 1985. Effect of digestible energy on nitrogen and energy balance in rainbow trout, Oncorhynchus mykiss. Aquaculture 50, 89–101. Kaushik, S.J., Covès, D., Dutto, G., and Blanc, D., 2004. Almost total replacement of fishmeal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 230, 391–404.
Kim, J.D., and Lall, S.P., 2000 . Amino acid composition of whole body tissue of Atlantic halibut Hippoglossus hippoglossus, yellowtail
flounder Pleuronectes ferruginea and Japanese flounder Paralichthys olivaceus. Aquaculture 187, 367–373. Krishnamoorthy, R., Syed Mohamed, H.E., and Shahulhameed, P., 2008. Temperature effect on behavior, oxygen consumption, ammonia excretion and tolerance limit of the fish fingerling of Alepes djidaba. J. of Environ. Scie. and Engg. 50, 169-174. Laining, A., Rachmansynah, T.A., and Williams, K., 2003. Apparent digestibility of selected feed ingredients for humpback grouper, Cromileptes altivelis. Aquaculture 218, 529-538. Leung, K.M.Y., Chu, J.C.W., and Wu, R.S.S., 1999. Effects of body weight, water temperature and ration size on ammonia excretion by the areolated grouper Epinephelus areolatus and mangrove snapper Lutjanus argentimaculatus. Aquaculture 170, 215–227. Lim, C.K., Wong, W.P., Lee, S.M.L., Chew, S.F., and Ip, Y.K., 2004. The ammonotelic African lungfish, Protopterus dolloi, increases the rate of urea synthesis and becomes ureotelic after feeding. J. Comp. Physiol. 174, 555–564. Liu, F.G., Yang, S.D., and Chen, H.C., 2009. Effect of temperature, stocking density and fish size on the ammonia excretion in palmetto bass (Morone saxatilis x M. chrysops). Aquaculture research 40, 450-455. Lone, K.P., Ince, B.W., and Matty, A.J., 1982. Changes in the blood chemistry of rainbow trout, Salmo gairdneri fish, in relation to dietary protein level, and an anabolic steroid hormone, ethylestrenol. J. Fish Biol. 20, 597–606.
Lou, Z., Liu, Y.J., Mai, K.S., and Tian, L.X., 2005a. Advances in the study on nutrient requirements of grouper (Ephinephelus sp.): A review. J. Ocean Univ. China 4, 93-98. Lou, Z., Liu, Y.J., Mai, K.S., Tian, L.X., and Yang, H.J., 2007a. Effects of dietary arginine levels on growth performance and body composition of juvenile grouper Epinephelus coioides. J. Appl. Ichthyol. 23, 252-257. Lou, Z., Liu, Y.J., Mai, K.S., Tian, L.X., Liu, D.H., and Tan, X.Y., 2004. Optimal dietary protein requirement of grouper Epinephelus Coioides juveniles fed isoenergetic diets in floating net cages. Aquaculture Nutrient 10, 247-252. Lou, Z., Liu, Y.J., Mai, K.S., Tian, L.X., Yang, H.J., Liang, G.Y., and Liu, D.H., 2006. Quantitative L-lysine requirement of juvenile grouper E. coioides. Aquacuture Nutrition 12, 165-172. Lou, Z., Liu, Y.J., Mai, K.S., Tian, L.X., Yang, H.J., Tan, X.Y., and Liu, D.H., 2005b. Dietary L-methionine requirement of juvenile grouper Epinephelus coioides at a constant dietary cystine level. Aquaculture 249, 409-418. Lou, Z., Liu, Y.J., Mai, K.S., Tian, L.X., Yang, H.J., Tan, X.Y., and Liu, D.H., 2007b. Influence of dietary amino acid profiles on growth performance and body composition of juvenile grouper Epinephelus coioides. J. Appl. Ichthyol. 1-5. Luo, Y., and Xie, X., 2009. The effect of temperature on post-feeding ammonia excretion and oxygen consumption in the southern catfish. J Comp Physiol B 179, 681–689.
McDonald, D.G., Goldsten, M.D., and Mitton, C., 1993. Responses of hatchery-reared brook trout, lake trout and splake to transport stress. Trans. Am. Fish Soc. 122, 1127–1138. Melo, J.F.B., Lundstedt, L.M., Metón, I., Baanante, I.V., and Moraes, G., 2006. Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei: Pimelodidae). Comparative Biochemistry and Physiology 145, 181–187. Millamena, O. M., 2002. Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides. Aquaculture 204, 75–84. Mommsen, T.P., and Hochachka, P.W., 1988. The purine nucleotide cycle as two temporally separated metabolic units: a study on trout muscle. Metabolism 37, 552–556. Murai, T., Akiyama, T., Ogata, H., Hirasawa, H., and Nose, T., 1987. Portal absorption and hepatic uptake of amino acids in rainbow trout force-fed complete diets containing casein or crystalline amino acids. Nippon Suisan Gakkaishi 53, 1847-1859. Murillo-Gurrea, D.P., Coloso, R.M., Borlongan, I.G., and Serrano, A.E.Jr., 2001. Lysine and arrginine requirements of juvenile Asian sea bass Lates calcarifer. J. Appl. Ichthyol. 17, 49-53. Pereira, T.G., and Oliva-Teles, A., 2003. Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles. Aquacuture Research 34, 1111 – 1117.
Pereira, T.G., and Oliva-Teles, A., 2005. The effect of dietary protein replacement by crystalline amino acid on growth and nitrogen
utilization of turbot Scophthalmus maximus juvenile. Aquaculture 250, 755– 764. Peres, H., and Oliva-Teles, A., 2006. Effect of the dietary essential to non-essential amino acid ratio on growth, feed utilization and nitrogen metabolism of European sea bass (Dicentrarchus labrax). Aquaculture 256, 395–402. Peres, H., and Oliva-Teles, A., 2007. Effect of the dietary essential amino acid pattern on growth, feed utilization and nitrogen metabolism of European sea bass (Dicentrarchus labrax). Aquaculture, article in press. Pierre, S., Gaillard, S., Prevot-D’alvise, N., Aubert, J., Rostaing-Capaillon, O., Leung-Tack, D., and Grillasca, J.-P., 2008. Grouper aquaculture: Asian success and Mediterranean trials. Aquatic Conservation: Marine Freshwater Ecosystem 18, 297–308. Poston, H.A., 1986. Response of rainbow trout Salmo gairdneri to source and level of supplemental dietary methionine. Comparative Biochemistry and Physiology 83, 739-744. Randall, D.J., and Wright, P.A., 1987. Ammonia distribution and excretion in fish. Fish Physiol. Biochem. 3, 107–120. Raj J.J., Anitha, A., and Sukumaran, N., 2002. Effect of temperature on the energy metabolism of a fresh water fish Oreochromis mossambicus (Peter). Proceedings of National Symposium on Thermal Ecology, Manonmanium Sundarnar university, Tirunelveli, 444-448.
Rasmussen, R.S., and Korsgaard, B., 1998. Ammonia and urea in plasma of juvenile turbot (Scophthalmus maximus L.) in response to external ammonia. Comparative Biochemistry and Physiology 120, 163-168.
Robaina, L., Izquierdo, M.S., Moyano, F.J., Socorro, J., Vergara, J.M., Montero, D., and Fernandez-Palacios, H., 1995. Soybean and lupin seed meals as protein sources in diets for gilthean seabream (Sparus aurata): Nutrition and histological implications. Aquaculture 130, 219-233. Rodehutscord, M., Mandel, S., and Pfeffer, E., 1994. Reduced protein content and use of wheat gluten in diets for rainbow trout: effects on water loading with N and P. J. Appl. Ichthyol. 10, 271– 273 Rodehutscord, M., Mandel, S., Pack, M., Jacobs, S., and Pfeffer, E., 1995. Free amino acids can replace protein-bound amino acids in test diets for studies in rainbow trout (Oncorhynchus mykiss). Journal of Nutrition 125, 956– 963. Sadovy Y., 2000. Regional survey for fry/fingerling supply and current practices for grouper mariculture: evaluating current status and long-term prospects for grouper mariculture in South East Asia. Final report to the Collaborative APEC grouper research and development network (FWG 01/99). Sadovy Y., 2001. Summary of regional survey of fry/fingerling supply for grouper mariculture in South East Asia. SPC Live Reef Fish Information Bulletin 8, 22–29. Schuhmacher, A., Goldberg, M., Schon, J., Wax, C., and Gropp, J. M., 1993. Plasma amino acid levels in rainbow trout, (O. mykiss). EIFAC Workshop on Methodology for Determination of Nutrient Requirements in Fish, 29 June- 1 July 1993, Eichenau, Germany.
Schuhmacher, A., Wax, C., and Gropp, J. M., 1997. Plasma amino acid levels in rainbow trout (Oncorhynchus mykiss) fed intact protein or a crystalline amino acid diet. Aquaculture 151, 15-28. Segovia-Quintero, M.A., and Reigh, R.C., 2004. Coating crystalline methionine with tripalmitin-polyvinyl alcohol slows its absorption in the intestine of Nile tilapia, Oreochromis niloticus. Aquaculture 238, 355–367. Shiau, S.Y., 2001. Applications of fish nutrition research in aquaculture: the Taiwan experience. Aquaculture Research 32, 639-643. Shiau, S.Y., and Lan, C.W., 1996. Optimum dietary protein level and protein to energy ratio for growth of grouper Epinephelus malabaricus. Aquaculture 145, 259-266. Shiau, S.Y., Lin, S.F., Yu, S.L., Lin, A.L., and Kwok, C.C., 1990. Defatted and full-fat soybean meal as partial replacements for fishmeal in tilapia (Oreochromis niloticus x Oreochromis aureus) diets at low protein level. Aquaculture 86, 401-407. Sim, S.Y., 2005. Influence of economic conditions of importing nations and unforeseen global events on grouper markets. Aquaculture Asia Magazine October–December: 23–31. Sim, S.Y., Rimmer, A., Williams, K., Toledo, J.D., Sugama, K., Rumengan, I., and Phillips, M.J., 2005. A practical guide to feeds and feed management for cultured groupers. NACA, ACIAR, Publication No. 2005-02 of the Asia-Pacific Marine Finfish Aquaculture Network.
Sitjà-Bobadilla, A., Penã-Llopis, T.S., Gómez-Requeni, P., Médale, F., Kaushik, S., and Pérez-Sánchez, J., 2005. Effect of fishmeal replacement by plant protein sources on non-specific defence
bass Morone saxatilis. Aquacuture Nutritrion 6, 207-212. Solórzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite methods. Limnol. Oceangr. 14, 79-81. Suárez, M.D., Hidalgo, M.C., García Gallego, M., Sanz, A., de la Higuera, M., 1995. Influence of relative proportions of energy yielding nutrients on liver intermediary metabolism of the European eel. Comparative Biochemistry and Physiology 111, 421–428. Takagi, S., Shimeno, S., Hosokawa, H., and Ukawa, M., 2001. Effect of lysine and methionine supplementation to a soy protein concentrate diet for red sea bream Pagrus major. Fisheries Science 67, 1088–1096. Tng, Y.Y.M., Wee, N.L.J., Ip, Y.K., and Chew, S.F., 2008. Postprandial nitrogen metabolism and excretion in juvenile marble goby, Oxyeleotris marmorata (Bleeker, 1852). Aquaculture 284, 260–267. Tsai, H.C., 2003. Studies on improvement of grouper feed study of partial substitution of fishmeal with different protein sources. National Taiwan Ocean University, Taiwan R.O.C. Watanabe, T., Aoki, H., Watanabe, K., Maita, M., Yamagata, Y., and Satoh, S., 2001. Quality evaluation of different types of non-fishmeal diets for yellowtail. Fisheries Science 67, 461– 469.
Webb, K.A. and Gatlin, Jr., D.M., 2003. Effects of dietary protein level and form on production characteristics and ammonia excretion of red drum Sciaenops ocellatus. Aquaculture 225, 17–26.
Wicks, B.J., and D.J. Randall, D.J., 2002. The effect of feeding and fasting on ammonia toxicity in juvenile rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology 59, 71–82.
Wilson, R.P., and Cowey, C.B., 1985. Amino acid composition of whole body tissue of rainbow trout and Atlantic salmon. Aquaculture 48, 373–376.
Wilson, R.P., and Poe, W.E., 1985. Relationship of whole body and egg essential amino acid patterns to amino acid requirement patterns in channel catfish, Ictalurus punctatus. Comparative Biochemistry and Physiology 80, 385–388. Yamada, S., Simpson, K., Tanaka, Y., and Katayama, T., 1981. Plasma amino acid changes in rainbow trout force fed casein and corresponding crystalline amino acid mixture. Bulletin of Japanese Society for Scientific Fisheries 47, 1035-1040. Zakęs, Z., Zakęs, Kd., and Kata, K., 2003. Rates of oxygen consumption and ammonia excretion of juvenile Eurasian perch Perca fluviatilis L. Aquacuture International 11, 277–288. Zhang, C., Ai, Q., Mai, K. Tan, B., Li, H., and Zhang, L., 2008. Dietary lysine requirement of large yellow croaker Pseudosciaena croacea R. Aquaculture 283, 123-127.
Zhou, X.Q., Zhao, C.R., and Lin, Y., 2007. Compare the effect of diet supplementation with uncoated or coated lysine on juvenile Jian carp (Cyprinus carpio Var Jian). Aquaculture Nutrition 13, 457–461.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 點帶石斑飼料中以替代蛋白取代魚粉與添加龍鬚菜萃取物之效應
2. 飼料中以大豆粉取代魚粉對雜交赤鰭笛鯛及以雞肉粉和水解魚蛋白取代魚粉對點帶石斑成長之影響
3. 植物蛋白為主蛋白質源的飼料中添加不同含量的蛋白質及結晶型胺基酸對吳郭魚成長及排氨的效應
4. 銀鱸的飼料營養研究:磷、離胺酸和肉鹼含量對成長、體組成、血液性狀及代謝反應之影響
5. 飼料中水解魚蛋白與酵母粉對點帶石斑成長及活存之影響
6. 飼料添加守宮木對點帶石斑非特異性免疫反應及成長的影響
7. 高植物蛋白質飼料添加枯草芽孢桿菌孢子對點帶石斑魚利用結晶甲硫胺酸能力之影響
8. 添加結晶型胺基酸飼料對吳郭魚排氨、血液生化值及血漿胺基酸的效應
9. 絲蘭萃取物在點帶石斑與紅紋笛鯛養殖之應用
10. 旋轉汙物收集器對循環水箱網石斑中間育成系統水質之影響
11. 兩種不同比例的蛋白質與脂質飼料以三種不同量投餵對吳郭魚成長、體組成和血液生化値之效應
12. 延遲投餵結晶型氨基酸對吳郭魚(Oreochromismossambicus)成長、血液生化值、排氨量的效應
13. 飼料中添加亞麻籽粉與大豆油取代魚油對點帶石斑(Epinephelus coioides)成長、脂肪酸組成之影響
14. 探討含高量黃豆粉飼料中添加膽固醇及膽酸對龍膽石斑成長、營養素消化率及膽固醇代謝之影響
15. 探討含高量黃豆粉飼料添加有機酸對龍膽石斑成長及營養素消化率之影響