(3.92.96.236) 您好!臺灣時間:2021/05/07 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:潘婕玉
研究生(外文):Chieh-Yu Pan
論文名稱:抗菌胜肽 epinecidin-1, hepcidin 與 anti-lipopolysaccharide factor 抑制人類和魚類病原體以及探討免疫調節功能之應用
論文名稱(外文):Studies of aquatic antimicrobial peptides of epinecidin-1, hepcidin, and an anti-lipopolysaccharide factor against human and fish pathogens, their immunomodulatory functions and applications
指導教授:林正輝林正輝引用關係陳志毅陳志毅引用關係
指導教授(外文):Cheng-Hui LinJyh-Yih Chen
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:156
中文關鍵詞:抗菌胜肽免疫調節
外文關鍵詞:antimicrobial peptidesimmunomodulatory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:857
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:0
本論文為探討水產生物所衍生抗菌胜肽及其在生物產業中的應用,在醫藥界及養殖產業上,目前已經面臨抗藥菌株的出現,且逐漸對抗生素失去效用,所以當務之急必須尋找開發新的抗菌物質,因應越來越多具有抗藥性病菌。然而海洋生物種類繁多,物種歧異度高,是未來尋找新抗菌胜肽的很好且適合材料。本研究利用硬骨魚類及無脊椎生物中找到幾種抗菌胜肽,應用在斑馬魚及老鼠等動物上均有不錯的預防及救治效果。
首先利用合成法分別合成點帶石斑魚epinecidin - 1、草蝦SALF及SALF胜肽。研究體外活性,結果發現,測試epinecidin -1抗病原體株最低抑菌濃度(MICs)達12.5-200 µg/ml、csSALF是100-200 µg/ml、lsSALF 25-200 µg/ml。這些胜肽的活性也利用掃描式電子顯微鏡(SEM),穿透式電子顯微鏡(TEM)佐證。研究結果epinecidin -1、csSALF和lsSALF是很好的胜肽藥物選擇,並可治療陰道滴蟲或做藥物輔助治療痤瘡桿菌及和白色念珠菌等。
延伸利用石斑魚epinecidin -1抗菌胜肽添加至市售的清潔用品上能加強抗菌之能力,再經由實驗測試分別保存在4 ◦C、 25 ◦C及添加抗菌胜肽後7天及14天後,又分別測試了糞腸球菌,大腸桿菌,克雷伯氏菌,綠膿桿菌,金黃色葡萄球菌,痤瘡丙酸桿菌,白色念珠菌等。最低抑菌濃度測定及紙片擴散試驗和細菌數量的計數比較後發現,16、24、48和72小時的細菌數量比市售清潔劑有更好的治療抑菌圈的效果,另外epinecidin -1的功效,在清潔劑上有較強抑制細菌數的活性,然而實驗結果也發現用pH值較低及改變溫度變化時,並沒有受到影響。由於其結構簡單和有抗菌活性。epinecidin - 1可能是一個有用的組成物,在防止病原菌感染和修復陰道菌叢異常或皮膚菌群的好的殺菌劑。
發現epinecidin- 1可以抗革蘭氏陰性菌及陽性菌和真菌,更何況也抗原蟲等的情況下,又再次利用epinecidin - 1抗菌胜肽,救治受創傷弧菌感染之斑馬魚模式系統上進行抑菌作用,對於急性細菌性感染研究的預先處理,或是 epinecidin -1在斑馬魚上有獲得治療後其保護效果。所以利用體內實驗結果顯示,混合epinecidin- 1和創傷弧菌治療30天後有78到97%的存活率。另外再將存活的斑馬魚進行二次弧菌感染亦得到有22到47%的存活率。當epinecidin -1預處理和治療後中各獲得57%和60%的存活率。因此epinecidin -1也利用在微陣列和定量PCR方法分析,發現一些有趣免疫相關基因如IL-10,IL-1β,腫瘤壞死因子TNF-α,干擾素INF-γ等。Epinecidin -1開發魚類受細菌性感染的一個抗菌材料,也許未來可以提供在各種物種體內的一個好的抗菌藥物的開發及應用。
另外,利用基因轉殖技術-轉殖抗菌基因魚,分別為實驗室先前所選殖出的吳郭魚抗菌胜肽TH 1-5和草蝦上選殖出的chelonianin,分別轉殖至斑馬魚上,並且利用創傷弧菌 (204) 及無乳鏈球菌(SA48)感染,之後看是否有增強這兩種基因,並且大量表現抗菌之功能。實驗證明轉基因AMP斑馬魚比非轉基因斑馬魚肌肉上注射創傷弧菌或無乳鏈球菌的細菌數量都在96小時後減少了。此外,免疫相關基因表達即時定量 PCR分析研究表示,包括白細胞介素IL-10、 IL- 22、 IL-26、MyD88、 TLR-1、 TLR- 3、 TLR- 4、 NF- κB、 TNF- α,這幾個基因都在兩者之間有顯著的差異性。並且在活存率方面的觀察經過28天受細菌感染的兩種基因轉殖AMP斑馬魚和野生型之間分別有86.6%及50%、0%的存活率,這些結果意味著TH 1-5和chelonianin基因具備應用在水產養殖治療魚病潛力。
最後,更要了解抗菌胜肽的抗菌和免疫調節功能,可否應用在跨物種上亦可有效,所以利用吳郭魚鐵調素TH 2-3及創傷弧菌施打小鼠。混合 TH 2-3及創傷弧菌注射小鼠體內感染觀察存活率適用於受創傷弧菌感染的小鼠體內。此外,TH 2-3使用微陣列基因表達研究發現TH 2-3調控幾個宿主在創傷弧菌感染後的相對應基因。檢測小鼠中和抗體血清降低創傷弧菌的抗原,表現出一種免疫誘導及TH 2-3對病原體的反應。這些特性使得TH 2-3抗菌胜肽作為一種發展新的抗菌藥物及佐劑疫苗很好的選擇。


This thesis describes antimicrobial peptides wishes derived from aquatic organisms, have the potential of their applications in bio-industry, the pharmaceutical industry, and agriculture. Humans have relied on antibiotics produced by bacteria for many decades, but with the emergence of drug-resistant strains and their gradual loss of effectiveness, it is imperative to find new antibacterial substances, for an increasing number of drug-resistant bacteria. There is a wide range of marine organisms, differences among species are great, and there is now a search for antimicrobial peptides and suitable materials. In this study, antimicrobial peptides found in several bony fish and invertebrates were used in zebrafish, mice, and other animals for prevention, and treatment produced good effects.
The synthetic epinecidin-1 of Epinephelus coioides epinecidin-1. The synthetic SALF cyclic peptide and linear peptide of the Penaeus monodon anti-lipopolysaccharide factor (ALF), respectively. Sudied the in vitro activities of epinecidin-1, csSALF, and lsSALF against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis. The minimum inhibitory concentrations (MICs) of epinecidin-1 for the test pathogen strains ranged 12.5-200 μg/ml, those of csSALF ranged 100-200 μg/ml, and those of lsSALF ranged 25-200 mg/ml. Epinecidin-1 22-42 exhibited cytotoxicity towards P. acnes, C. albicans and T. vaginalis, suggesting that epinecidin-1 functions like a lytic peptide. Similar cytotoxicity was identified against T. vaginalis treated with the csSALF and lsSALF peptides. The antimicrobial activities of these peptides were confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), a viable cell count assay, and flow cytometric analysis. TEM and SEM examinations of T. vaginalis treated with these three peptides showed that severe swelling preceded cell death and breakage of the outer membrane, and the intracellular inclusion was found to have effluxed extracellularly. This phenomenon was also found with epinecidin-1 treatment of P. acnes and C. albicans. Our results suggest that the epinecidin-1, csSALF, and lsSALF peptides may be good candidates for treating trichomoniasis and epinecidin-1 may have potential as a drug supporting therapy for acne and candidiasis.
When tested the activity of epinecidin-1, a novel antimicrobial peptide structurally related to pleurocidin, by adding into commercial cleaning solutions stored at 4 and 25 ◦C for 7 and 14 days. The peptide’s activities against Enterococcus faecalis, Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa, Staphylococcus aureus, Propionibacterium acnes, and Candida albicans were measured in a minimum inhibitory concentration (MIC) determination, minimal bactericidal concentration (MBC) determination, disk diffusion test, and a count of the bacterial numbers.

Exposure to epinecidn-1 in a cleaning solution following MIC value comparisons in the disk diffusion test and counts of bacterial numbers after 16, 24, 48, and 72 h suggested that bacterial numbers were much lower than those treated with only commercial cleaning solutions for all bacteria. The efficacy of the antimicrobial activities of inhibiting bacterial numbers by epinecidin-1 in cleaning solutions at a low pH and a low temperature was not affected. Given its simple structure and antimicrobial activity, epinecidin-1 may be a useful component of microbicides designed to prevent pathogen infections and/or remediate abnormal vaginal or skin flora.
In the present study, used Vibrio vulnificus and a zebrafish model system to investigate the inhibitory effect of epinecidin-1 on acute bacterial infection and studied the impacts of pretreatment, cotreatment, and post-treatment with epinecidin-1 on its protective efficacy. In vivo experiments showed that co-treatment with epinecidin-1 and V. vulnificus achieved 78%~97% survival rates after 30 days. When epinecidin-1 and V. vulnificus were co-injected into zebrafish and zebrafish were rechallenged with V. vulnificus after 30 days, zebrafish had survival rates of 22% ~ 47%. Pretreatment and post-treatment with epinecidin-1 obtained respective survival rates of 57% and 60%. In addition, epinecidin-1 modulated the expressions of immune-responsive genes like interleukin IL-10, IL-1β, tumor necrosis factor-α, and interferon-γ as analyzed by a microarray and qPCR approach. This study demonstrates the use of epinecidin-1 to develop inactivated material for fish bacterial infections which can provide guidelines for the future design of epinecidin-1-bacterial formulations for various in vivo applications.
Recently, tilapia hepcidin (TH) 1-5 was characterized, and its antimicrobial functions against several pathogens were reported. The antimicrobial functions of another shrimp antimicrobial peptide (AMP), chelonianin, were also characterized using a recombinant chelonianin protein (rcf) that was expressed by a stably transfected Chinese hamster ovary (CHO) cell line against pathogen infections in fish. The function of the overexpression of both AMPs in zebrafish muscles was not examined in previous studies. Herein, Study investigated the antimicrobial functions of TH 1-5 and chelonianin against Vibrio vulnificus (204) and Streptococcus agalactiae (SA48) in transgenic TH 1-5 zebrafish and transgenic chelonianin zebrafish. The presence of TH 1-5 and chelonianin enhanced the inhibitory ability in transgenic AMP zebrafish against the two different bacterial infections. The bacterial number of either V. vulnificus (204) or S. agalactiae (SA48) had decreased at 96 h after injection into transgenic AMP zebrafish muscle compared to non-transgenic zebrafish muscle. Additionally, immune-related gene expressions analyzed by real-time PCR studies showed the modulation of several genes including interleukin (IL) -10, IL-22, IL-26, MyD88, Toll-like receptor (TLR) -1, TLR-3, TLR-4, nuclear factor (NF) -κB, tumor necrosis factor (TNF) -α, and lysozyme, and significant differences were found between transgenic AMP zebrafish and wild-type zebrafish injected with PBS at 1e24 h. These results suggest that several immune-related gene expressions were induced in transgenic TH 1-5 and chelonianin zebrafish which effectively inhibited bacterial growth. The survival rate dropped to 86.6% in transgenic chelonianin zebrafish after 28 days of infection compared of the 50% survival rate in transgenic TH 1-5 zebrafish after 28 days of infection. Overall, these results indicate that TH 1-5 and chelonianin possess the potential to be novel candidate genes for aquaculture applications to treat fish diseases.
The antimicrobial and immunomodulatory functions of the antimicrobial peptide, tilapia hepcidin (TH) 2-3, against a bacterial endotoxin under in vitro conditions was previously reported. In this study, when investigated the antibacterial and immunomodulatory functions of TH 2-3 in mice infected with the pathogen, Vibrio vulnificus. A TH 2-3 injection in V. vulnificus-infected mice produced an increased survival rate compared to mice injected with V. vulnificus only. In addition, a TH 2-3 injection increased the bacteriostatic property against V. vulnificus in mice. Gene expressions examined using a microarray demonstrated that TH 2-3 modulated several V. vulnificus-responsive genes in the host. A neutralizing antibody assay of mice serum against inactivated V. vulnificus antigen-coated plates demonstrated the induction of an immune response by TH 2-3 against the pathogen. Taken together, TH 2-3 enhanced the survival rate of mice against the bacterial pathogen V. vulnificus through both antimicrobial and immunomodulatory functions. These properties make the TH 2-3 peptide a good candidate for development as a new antimicrobial drug and suggest that TH 2-3 can underpin the design of adjuvants for further development of vaccines.

Table of Contents

頁次
謝辭……………………………………………………………………...i
中文摘要………………………………………………………………..ii
Abstract……………………………………………………………….v
Table of Contents……………………………………………………….x
List of Table…………………………………………………………..xiii
List of Figures………………………………………………………….xiv
Chapter One  Introduction……………………………………………..1
 1.1. Research background……………………………………..1
 1.2. Literature Review ……………. ……………………………...…..3
1.2. Aim of this thesis ……………. …………………………………..4
Chapter Two  In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes,Candida albicans, and Trichomonas vaginalis……………………………………………………..6
 2.2. Abstract…………………………………………………..7
 2.3. Introduction……………………………………………8
2.4. Material and Methods…………………………………………10
2.5.Results…………………………………………13
2.6.Discussion……………………………………………17
Chapter Three  Evaluation of the epinecidin-1 peptide as an active ingredient in cleaning solution sagainst pathogens…………….…………30
 3.2. Abstract…………………………………………………..31
 3.3. Introduction……………………………………………31
3.4. Material and Methods…………………………………………33
3.5.Results…………………………………………36
3.6.Discussion……………………………………………38
Chapter Four  Insights into the antibacterial and immunomodulatory functions of the antimicrobial peptide, epinecidin-1, against Vibrio vulnificus infection in zebrafish………………….………………….........53
 4.2. Abstract…………………………………………………..54
 4.3. Introduction……………………………………………54
4.4. Material and Methods…………………………………………56
4.5.Results…………………………………………59
4.6.Discussion……………………………………………62
Chapter Five  Transgenic expression of tilapia hepcidin 1-5 and shrimp chelonianin in zebrafish and their resistance to bacterial pathogens……………………………………………………..73
 5.2. Abstract…………………………………………………………..74
 5.3. Introduction………………...……………………………………75
5.4. Material and Methods………….………………………………77
5.5.Resul………………………………………………………80
5.6.Discussion…………………………………………...………84
Chapter Six Insights into the antibacterial and immunomodulatory functions of tilapia hepcidin (TH) 2-3 against Vibrio vulnificus infection in mice………………………………………………………………...104
 6.2. Abstract………………………………………………………..105
 6.3. Introduction………………...…………………………………105
6.4. Material and Methods………….………………………………107
6.5.Results……………………………………………………110
6.6.Discussion………………………………………...………114
Chapter Seven Conclusion…………………………………...…..…..125
Chapter Eight References………………………………………..…..128
List of recent publications ………………………………………..…..152

 

























List of Tables

Table 2-6-1 Activity of antimicrobial peptides against C. albicans, P. acnes, and T. vaginalis…………….……………………………………………..21
Table 3-6-1 Antimicrobial activity of epinecidin-1 in the cleaning solution…………….……………………………………………………...41
Table 3-6-2 Antimicrobial activity of epinecidin-1 in the cleaning solution…………….……………………………………………………...42
Table 3-6-3 Antimicrobial activity of epinecidin-1 in the cleaning solution…………….…………………….………………………………..43
Table4-6-1PCR primers used for gene quantification.…………………....67
Table 4-6-2 Quantitative real-time PCR confirmation of the differential expressions of 11 randomly selected genes identified by a microarray as being differentially expressed…………………….……………………....67
Table 5-6-1 Primer sequences, and gene names and functions listed in this paper.…………….…………………………………………………….....92
Table 2-6-1 Activity of antimicrobial peptides against C. albicans, P. acnes, and T. vaginalis…………….……………………………….…………...105









List of Figures

Fig. 2-7-1 Scanning electron micrographs of P. acnes (a) and C. albicans (b) either untreated or treated with epinecidin-1 22-42.………….…………..22
Fig. 2-7-2 Transmission electron micrographs of P. acnes (a) and C. albicans (b) either untreated or treated with epinecidin-1 22-42.………………… …….…………………………………………..23
Fig. 2-7-3 Scanning electron microscopy of two T. vaginalis strains…………….……………………………………………… ……..24
Fig. 2-7-4 Transmission electronmicroscopy of two T. vaginalis strains…………….………………………………………………… …..25
Fig. 2-7-5 Membrane disruption of T. vaginalis cells after treatment…………….……………………………………………… …...26
Fig. 2-7-6 Cell viability was determined by trypan blue exclusion, and dead cells were observed under microscopy…………….……………………...27
Fig. 2-7-7 Propidium iodide staining and flow cytometric analysis of treatment of the T. vaginalis T1 strain……….……..…………….………28
Fig. 2-7-8 Propidium iodide staining and flow cytometric analysis of treatment of the T.vaginalis T1 strain.…………..…………….………….29
Fig. 3-7-1 In vitro bacteriostatic properties of epinecidin-1 in an Escherichia coli model.……………………….…………………………..44
Fig. 3-7-2 In vitro bacteriostatic properties of epinecidin-1 in a Pseudomona saeruginosa model..……………………….………………..45
Fig. 3-7-3 In vitro bacteriostatic properties of epinecidin-1 in a Staphylococcus aureus model..……………………….…………………..46
Fig. 3-7-4 In vitro bacteriostatic properties of epinecidin-1 in a Propionibacterium acnes model..……… …………….…………….…....47
Fig. 3-7-5 In vitro bacteriostatic properties of epinecidin-1 in a Candida albicans model..……………………….……………………………..…...49
Fig. 3-7-5 In vitro bacteriostatic properties of epinecidin-1 in a Enterococcus faecalis model..……………………….……………….......50
Fig. 3-7-6 In vitro bacteriostatic properties of epinecidin-1 in a Klebsiella oxytoca model..……………………….…………………….…………....51
Fig.4-7-1 Cumulative percent survival of zebrafish after an intraperitoneal injection with different concentrations of epinecidin-1..………..……….68
Fig.4-7-2 Significance of the microarray data...…………………………..69
Fig.4-7-3 qPCR verification…….….…………………….……………….70
Fig.4-7-4 qPCR verification…….….…………………….……………….71
Fig.4-7-5 qPCR verification…….….…………………….……………….72
Fig.5-7-1 Schematic illustration of tilapia hepcidin (TH) 1-5 and shrimp chelonianin expression cassettes...……….………………….…………....93
Fig.5-7-2 RT-PCR examined whether the transgene existed in transgenic tilapia...……….………………….…………………………….………….94
Fig.5-7-3 A bright-field photograph and fluorescence image of the same zebrafish...……………………………….………………….…………….94
Fig.5-7-3After immunohistochemical staining...……………….………...95
Fig.5-7-3 In vivo bactericidal properties of second-generation transgenic tilapia...…………………………………..………………….…………….97
Fig.5-7-4 Quantitative PCR analysis of immune-related gene expressions with no bacterial infection in transgenic and non-transgenic zebrafish...…………………………………..………………….…………98
Fig.5-7-5 Quantitative PCR analysis of immune-related gene expressions after Vibrio vulnificus...………………………………..…………………99
Fig.5-7-6 Quantitative PCR analysis of immune-related gene expressions aftera Streptococcu sagalactiae infection...……..……………………..101
Fig.5-7-5 In vivo bactericidal properties of second-generation transgenic tilapia...…………………………………..………………….………….117
Fig.6-7-1 Tilapia hepcidin (TH) 2-3 enhanced the survival of mice infected with Vibrio vulnificus....…………………………………...……………117
Fig.6-7-2 Effects of prophylactic and curative treatments with tilapia hepcidin (TH) 2-3 against Vibrio vulnificus infection in mice....……………………………………….……………………...…..118
Fig.6-7-3 Tilapia hepcidin (TH) 2-3 showed superior bacteriostatic function against Vibrio vulnificus.....……………….…………………………….119
Fig.6-7-4 Tilapia hepcidin (TH) 2-3 modulates Vibrio vulnificus-mediated alteration of gene expression profilesin mice....…………………………120
Fig.6-7-5 Tilapia hepcidin (TH) 2-3 induces the production of neutralizing antibodies again stanin activated Vibrio vulnificusantigen.....…..………121
Fig.6-7-6 Effect of tilapia hepcidin (TH) 2-3 on serum cytokine levels......……………………………………………………………....…122
Fig.6-7-7 Effect of tilapia hepcidin (TH) 2-3 on Vibrio vulnificus infection-mediated induction of spleen antigen-presenting cells......…………………………………………………..…………...…123

Al-Farsi S, Oliva M, Davidson R, Richardson SE, Ratnapalan S. Periurethral cleaning prior to urinary catheterization in children: sterile water versus 10% povidone–iodine. Clin Pediatr (Phil) 2009; 48: 656– 60.
Alday-Sanz V, Roque A, Turnbull JF. Clearing mechanisms of Vibrio vulnificus biotype I in the black tiger shrimp Penaeus monodon. Dis Aquat Organ 2002; 48: 91- 9.
Amaro C, Biosca EG, Fouz B, Alcaide E, Esteve C. Evidence that water transmits Vibrio vulnificus biotype 2 infections to eels. Appl Environ Microbiol 1995; 61: 1133- 7.
Anorlu RI, Orakwue CO, Oyeneyin L, Abudu OO. Late presentation of patients with cervical cancer to a tertiary hospital in Lagos: what is responsible? Eur J Gynaecol Oncol 2004; 25: 729–32.
Appendini P, Hotchkiss JH. Antimicrobial activity of a 14-residue synthetic peptide against foodborne microorganisms. J Food Protect 2000; 63: 889– 93.
Arvidsson PI, Frackenpohl J, Ryder NS, Liechty B, Petersen F, Zimmermann H, Camenisch GP, Woessner R, Seebach D. On the antimicrobial and hemolytic activities of amphiphilic beta-peptides. Chembiochem 2001; 771– 773.
Bachere E, Gueguen Y, Gonzalez M, Lorgeril J de , Garnier J, Romestand B. Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunology 2004; 198: 149– 168.
Bandholtz L, Ekman GJ, Vilhelmsson M, Buentke E, Agerberth B, Scheynius A,et al. Antimicrobial peptide LL-37 internalized by immature human dendritic cells alters their phenotype. Scand J Immunol 2006; 63: 410-419.
Baker-Austin C, McArthur JV, Lindell AH, Wright MS, Tuckfield RC, Gooch J, et al. Multi-site analysis reveals widespread antibiotic resistance in the marine pathogen Vibrio vulnificus. Microb Ecol 2009; 57: 151- 9.
Barthe C, Hocquellet A, Garbay B. Bacteriostatic activity of the proregion of human hepcidin. Protein Pept Lett 2011; 18: 36- 40.
Bergsson G, Arnfinnsson J, Karlsson SM, Steingrimsson O, Thormar H. In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob Agents Chemother 1998; 42: 2290- 4.
Bergsson G, Arnfinnsson J, Karlsson SM, Steingrimsson O, Thormar H. In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob Agents Chemother 1998; 42: 2290– 4.
Boman HG, Wade D, Boman IA, Wåhlin B, Merrifield RB. Antibacterial and antimalarial properties of peptides that are cecropinemelittin hybrids. FEBS Lett 1989; 259: 103- 6.
Boman HG. Antibacterial peptides: basic facts and emerging concepts. J Int Med 2003; 254: 197– 215.
Blondelle SE, Houghten RA. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry 1992; 31: 12688- 94.
Boziaris IS, Humpheson L, Adams MR. Effect of nisin on heat injury and inactivation of Salmonella enteritidis PT4. Int J Food Microbiol 1998 ;43: 7– 13.
Branen JK, Davidson PM. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int J Food Microbiol 2004; 90: 63- 74.
Bucki R, Leszczy_nska K, Namiot A, Soko1owski W. Cathelicidin LL-37: a multitask antimicrobial peptide. Arch Immunol Ther Exp (Warsz) 2010; 58: 15- 25.
Bubonja M, Wraber B, Brumini G, Gobin I, Veljkovic D, Abram M. Systemic and local CC chemokines production in a murine model of Listeria monocytogenes infection. Mediators Inflamm 2006; 3: 54202.
Camaschella C. Understanding iron homeostasis through genetic analysis of hemochromatosis and related disorders. Blood 2005; 106: 3710-7.
Campo S, Manrique S, García-Martínez J, San Segundo B. Production of cecropin A in transgenic rice plants has an impact on host gene expression. Plant Biotechnol J 2008; 6: 585- 608.
Chang WT, Pan CY, Rajanbabu V, Cheng CW, Chen JY. Tilapia (Oreochromis mossambicus) antimicrobial peptide, hepcidin 1-5, shows antitumor activity in cancer cells. Peptides 2011; 32: 342- 52.
Chen TT, Lu JK, Fahs R. Transgenic fish technology and its application in fish production. In: Altman A, editor. Agricultural biotechnology. New York, N.Y.: Marcel Dekker, Inc; 1998; 525- 47.
Chen JY, Chuang H, Pan CY, Kuo CM. cDNA sequence encoding an antimicrobial peptide of chelonianin from the tiger shrimp Penaeus monodon. Fish Shellfish Immunol 2005; 18: 179- 83.
Chiang SR, Tang HJ, Chang PC, Cheng KC, Ko WC, Chen CH, et al. Synergistic antimicrobial effect of cefotaxime and minocycline on proinflammatory cytokine levels in a murine model of Vibrio vulnificus infection. J Microbiol Immunol Infect 2007; 40: 123- 33.
Chiou MJ, Chen LK, Peng KC, Pan CY, Lin TL, Chen JY. Stable expression in a Chinese hamster ovary (CHO) cell line of bioactive recombinant chelonianin, which plays an important role in protecting fish against pathogenic infection. Dev Comp Immunol 2009; 33: 117- 26.
Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 2003; 4: 540- 5.
Cole AM, Darouiche RO, Legarda D, Connell N, Diampn G. Characterization of a fish antimicrobial peptide: gene expression, subcellular localization, and spectrum of activity. Antimicrob Agents Chemother 2000; 44: 2039– 2045.
De Domenico I, Nemeth E, Nelson JM, Phillips JD, Ajioka RS, Kay MS, et al. The hepcidin-binding site on ferroportin is evolutionarily conserved. Cell Metab 2008; 8: 146- 56.
Dombrowski MP, Sokol RJ, Brown WJ, et al. Intravenous therapy of metronidazole- resistant Trichomonas vaginalis. Obstet Gynecol 1987; 69: 524 –5.
Douglas SE, Gallant JW, Liebscher RS, Dacanay A, Tsoi SC. Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish. Develop Compar Immunol 2003; 27: 589– 601.
Falco A, Brocal I, Pérez L, Coll JM, Estepa A, Tafalla C. In vivo modulation of the rainbow trout (Oncorhynchus mykiss) immune response by the human alpha defensin 1, HNP1. Fish Shellfish Immunol 2008; 24: 102- 12.
Feldhusen F. The role of seafood in bacterial foodborne diseases. Microbes Infect 2000; 2: 1651- 60.
Fichorova RN, Tucker LD, Anderson DJ. The molecular basis of nonoxynol- 9-induced vaginal inflammation and its possible relevance to human immunodeficiency virus type 1 transmission. J Infect Dis 2001; 184: 418– 28.
Fingrut O, Reischer D, Rotem R, et al. Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells. Br J Pharmacol 2005; 146: 800 –8.
Fjalestad KT, Gjedrem T, Gjerde B. Genetic improvement of disease resistance in fish: an overview. Aquaculture 1993;111: 65- 74.
Frazer DM, Anderson GJ. Iron imports. I. Intestinal iron absorption and its regulation. Am J Physiol Gastrointest Liver Physiol 2005; 289: 631- 5.
Fraise AP. Susceptibility of antibiotic-resistant cocci to biocides. J Appl Microbiol 2002; 92: 158– 62.
Gaffar A, Esposito A, Afflitto J. In vitro and in vivo anticalculus effects of a triclosan/copolymer system. Am J Dent 1990; 3: 37– 42.
Galina J, Yin G, Ardó L, Jeney Z. The use of immunostimulating herbs in fish. An overview of research. Fish Physiol Biochem 2009; 35: 669- 76.
Ganz T. Defensins and host defense. Science 1999; 286: 420- 1.
Ganz T. Hepcidin in iron metabolism. Curr Opin Hematol 2004; 11: 251- 254.
Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3: 710- 20.
Geraghty P, Greene CM, O’Mahony M, O’Neill SJ, Taggart CC, McElvaney NG. Secretory leucocyte protease inhibitor inhibits interferon-gamma-induced cathepsin S expression. J Biol Chem 2007; 282: 33389- 95.
Giacometti A, Cirioni O, Greganti G, Quarta M, Scalise G. In vitro activities of membrane-active peptides against gram-positive and gram-negative aerobic bacteria. Antimicrob Agents Chemother 1998 ;42: 3320– 4.
Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1, 25-dihydroxyvitamin D3. FASEB J 2005; 19: 1067–1077.
Gong Z, Wan H, Tay TL, Wang H, Chen M, Yan T. Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle. Biochem Biophys Res Commun 2003; 308: 58- 63.
Grau GE, Maennel DN. TNF inhibition and sepsis e sounding a cautionary note. Nat Med 1997; 3: 1193- 5.
Gustafsson A, Olin AI, Ljunggren L. LPS interactions with immobilized and soluble antimicrobial peptides. Scand J Clin Lab Invest 2010; 70: 194- 200.
Gutierrez-Ramos JC, Bluethmann H. Molecules and mechanisms operating in septic shock: lessons from knockout mice. Immunol Today 1997; 18: 329- 34.
Gura T. Innate immunity. Ancient system gets new respect. Science 2001; 29: 2068- 71.
Haefner B. Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 2003; 8: 536– 44.
Hagiwara K, Kikuchi T, Endo Y, Huqu KU, Takahashi M, Shibata N. Mouse SWAM1 and SWAM2 are antibacterial proteins composed of a single whey acidic protein motif. J Immunol 2003; 170: 1973– 1979.
Han Y, Zhou D, Pang X, Zhang L, Song Y, Tong Z, et al. Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and highsalinity stress. Res Microbiol 2005; 156: 403- 15.
Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new antiinfective therapeutic strategies. Nat Biotechnol 2006; 24: 1551- 7
Hancock RE. The therapeutic potential of cationic peptides. Expert Opin Investig Drugs 1998; 7: 167- 74.
Haynie SL, Crum GA, Doele BA. Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin. Antimicrob Agents Chemother 1995; 39: 301- 7.
Henriksen J, Rowat AC, Brief E, et al. Universal behavior of membranes with sterols. Biophys J 2006; 90: 1639– 49.
Hiemstra PS, Maassen RJ, Stolk J, Heinzel-Wieland R, Steffens GJ, Dijkman JH. Antibacterial activity of antileukoprotease. Infect Immun 1996; 64: 4520- 4.
Hlady WG, Klontz KC. The epidemiology of Vibrio infections in Florida, 1981e1993. J Infect Dis 1996; 173: 1176- 83.
Hsieh JC, Pan CY, Chen JY. Tilapia hepcidin (TH)2-3 as a transgene in transgenic fish enhances resistance to Vibrio vulnificus infection and causes variations in immune-related genes after infection by different bacterial species. Fish Shellfish Immunol 2010; 29 :430- 9.
Hor LI, Chang YK, Chang CC, Lei HY, Ou JT. Mechanism of high susceptibility of iron-overloaded mouse to Vibrio vulnificus infection. Microbiol Immunol 2000; 44: 871- 8.
Huang PH, Chen JY, Kuo CM. Three different hepcidins from tilapia, Oreochromis mossambicus: analysis of their expressions and biological functions. Mol Immunol 2007; 44: 1922- 34.
Huang HN, Pan CY, Rajanbabu V, Chan YL, Wu CJ, Chen JY. Modulation of immune responses by the antimicrobial peptide, epinecidin (Epi)-1, and establishment of an Epi-1-based inactivated vaccine. Biomaterials 2011; 32: 3627- 36.
Ishige I, Usui Y, Takemura T, Eishi Y. Quantitative PCR of mycobacterial and propionibacterial DNA in lymph nodes of Japanese patients with sarcoidosis. Lancet 1999; 354: 120– 3.
Jacob SE, Amini S. Cocamidopropyl betaine. Dermatitis 2008; 19: 157– 60.
Jault C, Pichon L, Chluba J. Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 2004; 40: 759-71.
Jenkins S, Addy M, Newcombe R. Studies on the effect of toothpaste rinses on plaque regrowth. (II). Triclosan with and without zinc citrate formulations. J Clin Periodontol 1989; 16: 385– 7.
Jia X, Patrzykat A, Devlin RH, Ackerman PA, Iwama GK, Hancock RE. Antimicrobial peptides protect coho salmon from Vibrio anguillarum infections. Appl Environ Microbiol 2000; 66: 1928- 32.
Johnson PJ. Metronidazole and drug resistance. Parasitol Today 1993; 9: 183– 6.
Jones MK, Oliver JD. Vibrio vulnificus: disease and pathogenesis. Infect Immun 2009; 77: 1723- 33.
Kim SS, Kim JY, Lee NH, Hyun CG. Antibacterial and anti-inflammatory effects of Jeju medicinal plants against acne-inducing bacteria. J Gen Appl Microbiol 2008; 54: 101– 6.
Kim SY, Shin S, Koo HC, Youn JH, Paik HD, Park YH. In vitro antimicrobial effect and in vivo preventive and therapeutic effects of partially purified lantibiotic lacticin NK34 against infection by Staphylococcus species isolated from bovine mastitis. J. Dairy Sci 2010; 93: 3610– 3615.
King AE, Critchley HO, Sallenave JM, Kelly RW. Elafin in human endometrium: an antiprotease and antimicrobial molecule expressed during menstruation. J Clin Endocrinol Metab 2003; 88: 4426- 4431.
Kinsner A, Boveri M, Hareng L, Brown GC, Coecke S, Hartung T, et al. Highly purified lipoteichoic acid induced pro-inflammatory signalling in primary culture of rat microglia through Toll-like receptor 2: selective potentiation of nitric oxide production by muramyl dipeptide. J Neurochem 2006; 99: 596- 607.
Krause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 2000; 480: 147- 50.
Krieger JN, Dickins CS, Rein MF. Use of a time-kill technique for susceptibility testing of Trichomonas vaginalis. Antimicrob Agents Chemother 1985 ;27: 332– 6.
Kuwahara K, Kitazawa T, Kitagaki H, et al. Nadifloxacin, an antiacne quinolone antimicrobial, inhibits the production of proinflammatory cytokines by human peripheral blood mononuclear cells and normal human keratinocytes. J Dermatol Sci 2005; 38: 47– 55.
Lampe MF, Ballweber LM, Isaacs CE, Patton DL, Stamm WE. Killing of Chlamydia trachomatis by novel antimicrobial lipids adapted from compounds in human breast milk. Antimicrob Agents Chemother 1998; 42: 1239– 44.
Langsrud S, Sundheim G, Holck AL. Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers. J Appl Microbiol 2004; 96: 201– 8.
Lee IH,ChoY, Lehrer RI. Effects of pH and salinityonthe antimicrobial properties of clavanins. Infect Immun 1997; 65: 2898– 903.
Lee BC, Kim SH, Cho SH, Kim TS. Induction of interleukin-8 production via nuclear factor-kappaB activation in human intestinal epithelial cells infected with Vibrio vulnificus. Immunology 2005; 115: 506– 515.
Liew KJ, Chow VT. Microarray and real-time RT-PCR analyses of a novel set of differentially expressed human genes in ECV304 endothelial-like cells infected with dengue virus type 2. J Virol Methods 2006; 131: 47- 57.
Lin SB, Fan TW, Wu JL, Hui CF, Chen JY. Immune response and inhibition of bacterial growth by electrotransfer of plasmid DNA containing the antimicrobial peptide, epinecidin-1, into zebrafish muscle. Fish Shellfish Immunol 2009; 26: 451- 8.
Linkous DA, Oliver JD. Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett 1999; 174: 207- 14.
Lou DQ, Nicolas G, Lesbordes JC, Viatte L, Grimber G, Szajnert MF, et al. Functional differences between hepcidin 1 and 2 in transgenic mice. Blood 2004; 103: 2816- 21.
Lu JK, Chen TT, Chrisman CL, Andrisani OM, Dixon JE. Integration, expression and germ-line transmission of foreign growth hormone genes in medaka (Oryzias latipes). Mol Mar Biol Biotechnol 1992; 1: 366- 75.
Lu ZQ, Li MF, Qiu QM, Liang H, Zhou TL, Hong GL, Wu B. Effect of antimicrobial agents on the toll-like receptors and inflammatory cytokines in liver tissue of the alcohol-induced liver disease in rats with Vibrio vulnificus sepsis. Chin. Med. J 2009 ; 122: 1910– 1916.
Lushbaugh WB, Blossom AC, Shah PH, et al. Use of intravaginal microbicides to prevent acquisition of Trichomonas vaginalis infection in lactobacillus-pretreated,estrogenized young mice. Am J Trop Med Hyg 2000; 63: 284- 9.
Mai V, Ukhanova M, Visone L, Abuladze T, Sulakvelidze A. Bacteriophage administration reduces the concentration of Listeria monocytogenes in the gastrointestinal tract and its translocation to spleen and liver in experimentally infected mice. Int. J. Microbiol 2010; 6: 242-34.
Malik R , Manocha A, Suresh DK. Photodynamic therapy - a strategic review. Indian J. Dent 2010; 21: 85- 291.
Mangalappalli-Illathu AK, Korber DR. Adaptive resistance and differential protein expression of Salmonella enterica serovar enteritidis biofilms exposed to benzalkonium chloride. Antimicrob Agents Chemother 2006; 50: 3588– 96.
Mantur B, Parande A, Amarnath S, Patil G, Walvekar R, Desai A, Parande M, Shinde R, Chandrashekar M, Patil S. ELISA versus conventional methods of diagnosing endemic brucellosis. Am. J. Trop. Med 2010; 83: 314– 318.
Marr K. Combination antifungal therapy: where are we now, and where are we going? Oncology (Williston Park) 2004; 18: 24- 9.
Marris E. Transgenic fish go large. Nature 2010; 467: 259.
Marta Guarna M, Coulson R, Rubinchik E. Anti-inflammatory activity of cationic peptides: application to the treatment of acne vulgaris. FEMS Microbiol Lett 2006; 257: 1-6.
Malik R, Manocha A, Suresh DK. Photodynamic therapy- a strategic review. Indian J. Dent 2010; 21: 285- 291.
Meijer AH, Gabby Krens SF, Medina Rodriguez IA, He S, Bitter W, Ewa Snaar- Jagalska B, et al. Expression analysis of the toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol 2004; 40: 773- 83.
Meijer AH, Verbeek FJ, Salas-Vidal E, Corredor-Adámez M, Bussman J, van der Sar AM, et al. Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Mol Immunol 2005; 42: 1185- 203.
Meng S, Xu H, Wang F. Research advances of antimicrobial peptides and applications in food industry and agriculture. Curr Protein Pept Sci 2010; 11: 264- 73.
Meyer-Hoffert U, Wichmann N, Schwichtenberg L, White PC, Wiedow O. Supernatants of Pseudomonas aeruginosa induce the Pseudomonas-specific antibiotic elafin in human keratinocytes. Exp Dermatol 2003; 12: 418- 25.
Morrow MP, Yan J, Pankhong P, Ferraro B, Lewis MG, Khan AS, Sardesai NY, Weiner DB. Unique Th1/Th2 phenotypes induced during priming and memory phases by use of interleukin-12 (IL-12) or IL-28B vaccine adjuvants in rhesus macaques. Clin. Vaccine Immunol 2010; 17: 1493– 1499.
Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, Roche FM, Mu R, Doho GH, Jistolic P, Powers JP, Bryan J, Brinkman FS, Hancock RE. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J. Immunol 2006; 176: 2455– 2464.
Moreau T, Baranger K, Dadé S, Dallet-Choisy S, Guyot N, Zani ML. Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie 2008; 90: 284- 95.
Mueller L, Seggern LV, Schumacher J, Goumas F, Wilms C, Braun F, Broering DC. TNF-alpha similarly induces IL-6 and MCP-1 in fibroblasts from colorectal liver metastases and normal liver fibroblasts. Biochem. Biophys. Res. Commun 2010; 397: 586– 591.
Mutwiri GK, Henk WG, Enright FM, Corbeil LB. Effect of the antimicrobial peptide, D-hecate, on trichomonads. J Parasitol 2000; 86: 1355– 9.
Mumy KL, Mccormick BA. Events at the hostmicrobial interface of the gastrointestinal tract. II. Role of the intestinal epithelium in pathogen-induced inflammation. Am J Physiol Gastrointest Liver Physiol 2005; 288: 854– 859.
Mutoh H, Sashikawa M, Hayakawa H, Sugano K. Monocyte chemoattractant protein-1 is generated via TGF-beta by myofibroblasts in gastric intestinal metaplasia and carcinoma without H. pylori infection. Cancer Sci 2010; 101: 1783– 1789.
Narrdo A Di, Vitiello A, Gallo RL. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J. Immunol 2003; 170: 2274– 2278.
Narcisi EM, Secor WE. In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. Antimicrob Agents Chemother 1996; 40: 1121– 5.
Nix DE, Tyrrell R, Muller M. Pharmacodynamics of metronidazole determined by a time-kill assay for Trichomonas vaginalis. Antimicrob Agents Chemother 1995; 39: 1848– 52.
Ofer K, Gold D, Flescher E. Methyl jasmonate induces cell cycle block and cell death in the amitochondriate parasite Trichomonas vaginalis. Int J Parasitol 2008; 38: 959– 68.
Oren Z, Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem 1996; 237: 303-310.
Osenstie RPl, Philipp EE, Schreiber S, Bosch TC. Evolution and function of innate immune receptors–insights from marine invertebrates. J. Innate Immun 2009;1: 291–300.
Otero-Gonzalez AJ, Magalhaes BS, Garcia-Villarino M, Lopez-Abarrategui C, Sousa DA, Dias SC, Franco OL. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J 2010; 24: 1320– 1334.
Pan CY, Chao TT, Chen JC, et al. Shrimp (Penaeus monodon) anti-lipopolysaccharide factor reduces the lethality of Pseudomonas aeruginosa sepsis in mice. Int Immunopharmacol 2007; 7: 687– 700.
Pan CY, Chen JY, Cheng YS, et al. Gene expression and localization of the epinecidin-1 antimicrobial peptide in the grouper (Epinephelus coioides), and its role in protecting fish against pathogenic infection. DNA Cell Biol 2007; 26: 403– 13.
Pan CY, Chen JY, Cheng YS, Chen CY, Ni IH, Sheen JF, et al. Gene expression and localization of the epinecidin-1 antimicrobial peptide in the grouper (Epinephelus coioides), and its role in protecting fish against pathogenic infection. DNA Cell Biol 2007; 26: 403– 13.
Pan CY, Chen JY, Lin TL, Lin CH. In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis. Peptides 2009; 30: 1058– 68.
Pan CY, Chow TY, Yu CY, Yu CY, Chen JC, Chen JY. Antimicrobial peptides of an anti-lipopolysaccharide factor, epinecidin-1, and hepcidin reduce the lethality of Riemerella anatipestifer sepsis in ducks. Peptides 2010; 31: 806-5.
Patton DL, Kidder GG, Sweeney YC, Rabe LK, Hillier SL. Effects of multiple applications of benzalkonium chloride and nonoxynol 9 on the vaginal epithelium in the pigtailed macaque (Macaca nemestrina). Am J Obstet Gynecol 1999; 180: 1080– 7.
Patrzykat A, Douglas SE. Gone gene fishing: how to catch novel marine antimicrobials. Trends Biotechnol 2003; 21 :362– 9.
Patrzykat A, Gallant JW, Seo JK, et al. Novel antimicrobial peptides derived from flatfish genes. Antimicrob Agents Chemother 2003; 47: 2464– 70.
Palti Y. Toll-like receptors in bony fish: from genomics to function. Dev Comp Immunol; 2011 [Epub ahead of print].
Paradkar PN, De Domenico I, Durchfort N, Zohn I, Kaplan J, Ward DM. Iron depletion limits intracellular bacterial growth in macrophages. Blood 2008; 112: 866- 74.
Park IY, Park CB, Kim MS, Kim SC. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish.Parasilurus asotus. FEBS Lett 1998; 437: 258-262.
Patrzykat A, Douglas SE. Antimicrobial peptides: cooperative approaches to protection. Protein Pept Lett 2005; 12: 19-25.
Pedersen K, Skall HF, Lassen-Nielsen AM, Nielsen TF, Henriksen NH, Olesen NJ. Surveillance of health status on eight marine rainbow trout, Oncorhynchus mykiss (Walbaum), farms in Denmark in 2006. J Fish Dis 2008; 31: 659-67.
Peng KC, Pan CY, Chou HN, Chen JY. Using an improved Tol2 transposon system to produce transgenic zebrafish with epinecidin-1 which enhanced resistance to bacterial infection. Fish Shellfish Immunol 2010; 28: 905- 17.
Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 2010; 6: 1001- 1067.
Pin A, Falciani C, Mantengoli E, Bindi S, Brunetti J, Iozzi S. A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J 2010; 24: 1015– 022.
Powell JL, Wright AC, Wasserman SS, Hone DM, Morris Jr JG. Release of tumor necrosis factor alpha in response to Vibrio vulnificus capsular polysaccharide in vivo and in vitro models. Infect Immun 1997; 65: 3713- 8.
Quon DV, d’Oliveira CE, Johnson PJ. Reduced transcription of the ferredoxin gene in metronidazole-resistant Trichomonas vaginalis. Proc Natl Acad Sci USA 1992 ;89: 4402– 6.
Rajanbabu V, Pan CY, Lee SC, Lin WJ, Lin CC, Li CL, et al. Tilapia hepcidin 2-3 peptide modulates lipopolysaccharide-induced cytokines and inhibits tumor necrosis factor-alpha through cyclooxygenase-2 and phosphodiesterase 4D. J Biol Chem 2010; 285: 30577- 86.
Rajanbabu V, Chen JY. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 2011; 32: 415- 20.
Rajanbabu V, Chen JY. The antimicrobial peptide, tilapia hepcidin 2-3, and PMA differentially regulate the protein kinase C isoforms, TNF-a and COX-2, in mouse RAW264.7 macrophages. Peptides 2011; 32: 333- 41.
Rajanbabu V, Chen JY. Antiviral function of tilapia hepcidin 1-5 and its modulation of immune-related gene expressions against infectious pancreatic necrosis virus (IPNV) in Chinook salmon embryo (CHSE)-214 cells. Fish Shellfish Immunol 2011; 30: 39- 44.
Ragno S, Romano M, Howell S, Pappin DJ, Jenner PJ, Colston MJ. Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach. Immunology 2001; 104: 99-108.
Ramjee G, Karim SS, Sturm AW. Sexually transmitted infections among sex workers in KwaZulu-Natal, South Africa. Sex Transm Dis 1998; 25: 346– 9.
Rayman K, Malik N, Hurst A. Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system. Appl Environ Microbiol 1983; 46: 1450– 2.
Rogers TR. Antifungal drug resistance: does it matter? Int J Infect Dis 2002; 6: S47– 53.
Rolla G, Ellingsen JE, Gaare D. Polydimethylsiloxane as a tooth surface-bound carrier of triclosan: a new concept in chemical plaque inhibition. Adv Dent Res 1994; 8: 272– 7.
Roy CN, Mak HH, Akpan I, Losyev G, Zurakowski D, Andrews NC. Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood 2007; 109: 4038- 44.
Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 2007; 131: 1124- 36.
Sarmasik A, Warr G, Chen TT. Production of transgenic medaka with increased resistance to bacterial pathogens. Mar Biotechnol (NY) 2002; 4: 310- 22.
Sallenave JM, Cunningham GA, James RM, McLachlan G, Haslett C. Regulation of pulmonary and systemic bacterial lipopolysaccharide responses in transgenic mice expressing human elafin. Infect Immun 2003; 71: 3766- 74.
Savolainen J, Lammintausta K, Kalimo K, et al. Candida albicans and atopic dermatitis. Clin Exp Allergy 1993; 23: 332– 9.
Savoia D, Guerrini R, Marzola E, Salvadori S. Synthesis and antimicrobial activity of dermaseptin S1 analogues. Bioorg Med Chem 2008; 16: 8205– 9.
Saxton CA. The effects of a dentifrice containing zinc citrate and 2,4,4’ trichloro- 2’-hydroxydiphenyl ether. J Periodontol 1986; 57: 555– 61.
Schafer D, Lam TT, Geiger T, Mainiero M, Engelmann S, Hussain M, et al. A point mutation in the sensor histidine kinase SaeS of Staphylococcus aureus strain Newman alters the response to biocide exposure. J Bacteriol 2009; 191: 7306– 14.
Schmid JA, Birbach A. IkappaB kinase beta (IKKbeta/IKK2/IKBKB) – a key molecule in signaling to the transcription factor NF-kappaB. Cytokine Growth Factor Rev 2008; 19: 157– 165.
Sepulcre MP, Alcaraz-Pérez F, López-Muñoz A, Roca FJ, Meseguer J, Cayuela ML, et al. Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NFkappaB activation. J Immunol 2009; 182: 1836- 45.
Shi J, Camus AC. Hepcidins in amphibians and fishes: antimicrobial peptides or iron-regulatory hormones? Develop Compar Immunol 2006; 30: 746– 755.
Shin SH, Shin DH, Ryu PY, Chung SS, Rhee JH. Proinflammatory cytokine profile in Vibrio vulnificus septicemic patients’ sera. FEMS Immunol Med Microbiol 2002; 33: 133- 8.
Shin NR, Lee DY, Yoo HS. Analysis of gene expression in mouse alveolar macrophages stimulated with quorum-sensing mutants of Vibrio vulnificus. Jpn J Infect Dis 2008; 61: 402- 6.
Simpson AJ, Wallace WA, Marsden ME, Govan JR, Porteous DJ, Haslett C, et al. Adenoviral augmentation of elafin protects the lung against acute injury mediated by activated neutrophils and bacterial infection. J Immunol 2001; 167: 1778- 86.
Smith VJ, Desbois AP, Dyrynda E.A. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 2010; 8: 1213–1262.
Somboonwiwat K,MarcosM, Tassanakajon A, et al. Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Dev Comp Immunol 2005; 29: 841– 51.
Sonesson A, Ringstad L, Nordahl EA, et al. Antifungal activity of C3a and C3aderived peptides against Candida. Biochim Biophys Acta 2007; 1768: 346– 53.
Sonoda KH, Yoshimura T, Egashira K, Charo IF, Ishibashi T. Neutrophildominant experimental autoimmune uveitis in CC-chemokine receptor 2 knockout mice. Acta Ophthalmol 2010; 89: 180–188.
Stafford MK, Ward H, Flanagan A, Rosenstein IJ, Taylor-Robinson D, Smith JR, et al. Safety study of nonoxynol-9 as a vaginal microbicide: evidence of adverse effects. J Acquir Immune Defic Syndr Hum Retrovirol 1998; 17: 327– 31.
Stamm LV. Role of TLR4 in the host response to Vibrio vulnificus, an emerging pathogen. FEMS Immunol Med Microbiol 2010; 58: 336- 43.
Stephanou A. Role of STAT-1 and STAT-3 in ischaemia/reperfusion injury. J.Cell Mol 2004; 8: 519– 525.
Strom MS, Paranjpye RN. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect 2000; 2: 177- 88.
Subramanian S, Ross NW, Mackinnon SL. Comparison of the biochemical composition of normal epidermal mucus and extruded slime of hagfish (Myxine glutinosa L.). Fish Shellfish Immunol 2008; 25: 625– 632.
Sullivan C, Charette J, Catchen J, Lage CR, Giasson G, Postlethwait JH, et al. The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions. J Immunol 2009; 183: 5896- 908.
Swanson JK. Antibiotic resistance of Propionibacterium acnes in acne vulgaris. Dermatol Nurs 2003; 15: 359– 62.
Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21: 335- 76.
Tesniere A, Abermil N, Schlemmer F, Casares N, Kepp O, Pequignot M, Michaud M, Martins I, Senovilla L, Zitvogel L, Kroemer G. In vivo depletion of T lymphocyte-specific transcription factors by RNA interference. Cell Cycle 2010; 14: 2830– 2835.

Thorrold CA, Letsoalo ME, Duse AG, Marais E. Efflux pump activity in fluoroquinolone and tetracycline resistant Salmonella and E. coli implicated in reduced susceptibility to household antimicrobial cleaning agents. Int J Food Microbiol 2007; 113: 315– 20.
Thune RL, Stanley LA, Cooper RK. Pathogenesis of gram-negative bacterial infections in warmwater fish. Annu Rev Fish Dis; 1993:37-68.
Tincu JA, Taylor SW. Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 2004; 48: 3645- 3654.
Toma C, Higa N, Koizumi Y, Nakasone N, Ogura Y, McCoy AJ, Franchi L, ematsu US, Sagara J, Taniguchi S, Tsutsui H, Akira S, Tschopp J, Nunez G, Suzuki T. Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-kappa B signaling. J. Immunol 2010; 184 : 5287- 5297.
Tomee JF, Hiemstra PS, Heinzel-Wieland R, Kauffman HF. Antileukoprotease: an endogenous protein in the innate mucosal defense against fungi. J Infect Dis 1997; 176: 740- 7.
Tsai CD, Liu HW, Tai JH. Characterization of an iron-responsive promoter in the protozoan pathogen Trichomonas vaginalis. J Biol Chem 2002; 277: 5153– 62.
Wang YD, Kung CW, Chen JY. Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1–5 against nervous necrosis virus in medaka. Peptides 2010 ;31: 1026– 33.
Wang YD, Kung CW, Chi SC, Chen JY. Inactivation of nervous necrosis virus infecting grouper (Epinephelus coioides) by epinecidin-1 and hepcidin 1-5 antimicrobial peptides, and downregulation of Mx2 and Mx3 gene expressions. Fish Shellfish Immunol 2010; 28: 113- 20.
Wiedow O, Harder J, Bartels J, Streit V, Christophers E. Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes.
Biochem Biophys Res Commun 1998; 248 :904- 9.
Wu Y, Zhang Q, Sales D, Bianco AE, Craig A. Vaccination with peptide mimotopes produces antibodies recognizing bacterial capsular polysaccharides. Vaccine 2010; 28: 6425– 6435.
Yasin B, Harwig SS, Lehrer RI, Wagar EA. Susceptibility of Chlamydia trachomatis to protegrins and defensins. Infect Immun 1996; 64: 709- 13.
Yasin B, Pang M, Wagar EA. A cumulative experience examining the effect of natural and synthetic antimicrobial peptides vs Chlamydia trachomatis. J Pept Res 2004; 64: 65- 71.
Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol 2003; 55: 27- 55.
Zani ML, Baranger K, Guyot N, Dallet-Choisy S, Moreau T. Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Sci 2009; 18: 579- 94.
Zhang X, Song Y, Ci X, An N, Ju Y, Li H, X.ang W, Han C, Cui J, Deng X. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflamm 2008; 57: 524- 529.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 石斑魚抗菌蛋白基因選殖及生物功能
2. 以斑馬魚作為模式魚種,探討抗菌胜肽Epinecidin-1基因治療抗弧菌感染效果之研究
3. 以E. coli表現系統大量表現抗菌胜肽Epinecidin-1及Lactoferricin B並評估其有效性及安全性
4. 以 in vitro 與in vivo 方式研究魚類抗菌胜肽 Pardaxin 對老鼠纖維肉瘤之抗腫瘤效果
5. 探討腸炎弧菌對抗菌胜肽 Q6 之反應機制及利用大腸桿菌系統表現重組抗菌胜肽 Q6
6. 羅非魚鐵調素(TH) 2-3抗菌胜肽 (AMP) 對脂多醣(LPS)刺激小鼠巨噬細胞 所介導的免疫反應調節,及羅非魚鐵調素1-5 (TH1 – 5)對傳染性胰壞死病毒(IPNV)感染的鮭魚胚胎細胞(CHSE-214)所介導的抗病毒功能
7. 抗菌胜肽之二級結構與其殺菌過程中產生之氫氧自由基之關係研究
8. 革蘭氏陰性菌的外膜蛋白Lpp為陽離子性抗菌胜肽的受體
9. 台灣地區自骨骼關節組織和血液培養分離的對甲氧苯青黴素具抗藥性的金黃色葡萄球菌的基因型與表現型分析
10. 化妝品中常用二十五種精油之抗氧化、抗菌能力及化學組成分析之研究
11. 抗菌胜肽Tilapia Hepcidin 1-5對抑制癌症細胞之研究
12. 抗菌胜肽在胞膜上形成孔洞的機制
13. Sushi 3 衍生胜肽抗菌及抗腫瘤細胞 之可能機制
14. 新穎且具有潛力的抗菌胜肽對於癌細胞的效應及機轉探討
15. 吳郭魚 Granulins 調控魚類內生性免疫之分子機制研究及其應用
 
系統版面圖檔 系統版面圖檔