跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/26 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳勇銳
研究生(外文):Yung - Jui Wu
論文名稱:以外加電場方式評估飛灰混凝土之耐久性
論文名稱(外文):Assess the durability of fly ash concrete by using the external electrical field method
指導教授:楊仲家
指導教授(外文):Chung - Chia Yang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:71
中文關鍵詞:飛灰快速氯離子滲透試驗加速氯離子傳輸試驗
外文關鍵詞:fly ashrapid chloride penetration testaccelerated chloride migration test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:1
本研究內容為探討以不同飛灰含量(0%、20%、40%、50%、60%、80%)取代水泥,對混凝土耐久性的影響。將不同配比的混凝土試體,進行測量硬固混凝土吸水率、孔隙率的試驗,快速氯離子滲透試驗(RCPT),每30分鐘紀錄電流持續6小時,以通過總電量來評估抗氯離子能力,加速氯離子傳輸試驗(ACMT )求得氯離子穿透混凝土試體之時間與傳輸速率,並分別配合Modified Fick`second low及Nernst-Planck方程式計算氯離子於混凝土試體中的非穩態傳輸係數及穩態傳輸係數來評估混凝土試體內部氯離子穿透情形。試驗結果顯示,取代量40%至60%飛灰的混凝土試體,有較低的吸水率及孔隙率,而採用低燒失量的飛灰較採用高燒失量的飛灰更能減小內部孔隙。在RCPT試驗,齡期28天的各組組別,混凝土抵抗氯離子穿透性關係屬於中、高級別;齡期91天的各組組別,混凝土抵抗氯離子穿透性關係屬於中、低級別,其中取代量40%至60%飛灰的混凝土試體,具有較佳的抗氯離子穿透能力;此外觀察RCPT試驗中電流及總電量關係,可發現試驗開始通電五分鐘後所擷取電流高低,和試驗結束總電量有正比關係。AC,MT試驗中,40%至60%飛灰的混凝土試體,有較低的穩態及非穩態傳輸係數,而添加80%的飛灰取代量,所得到的結果甚至比未添加飛灰的組別差,試驗結果顯示混凝土添加適量的飛灰可降低孔隙率並提升抗氯離子的能力
The objective of this study is to investigate the influence of durability on concrete by different replacement percentage of fly ash substitution cement (0、20、40、50、60 and 80%). the samples are detected by test to determinations of percent absorption , and percent voids in hardened concrete. rapid chloride penetration test to assess the ability against chloride ions by recording the values of total electric quantity every 30 minutes when electric current lasts passing the cements for 6 hours. To assess the degree of chloride ions penetrating through concrete is acquired by accelerated chloride migration test getting the time that chloride had penetrated through the specimen from one side to another and the migration velocity of its. It is calculated by the Modified Fick’s second low for the Non-steady state migration coefficient and Nernst-Planck equation for the Steady state migration coefficient of chloride ions in concrete respectively. The results of test shows sample that 40~60% replacement of cement with fly ash have lower absorption and porosity than all others. Using low-loss ignition of concrete makes the inner construction of vesicle smaller than using high-loss ignition of it. The results of RCPT test shows the groups among immersing the concretes for 28 days belong to the middle or high level about the relation of the penetration against chloride ions in the concretes; those for 91 days belong to the middle or low level. Concrete samples containing 40~60% replacement of cement with fly ash have better ability to the penetration against chloride than all others. Observing the relation of current and total electric quantity, we find the amounts of current after test starting to pass electricity for 5 minutes are proportioned to the total electric quantity when test end. In ACMT test, 40~60% replacement of cement with fly ash have lower the Steady and Non-steady state migration coefficient than all others; However, the outcome of 80% replacement of cement with fly ash is inferior to 0% ones. The results of tests show concretes with optimal fly ash can decrease apertures and improve the ability against chloride ions.
Keywords: fly ash, rapid chloride penetration test, accelerated chloride migration test

目錄
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 前言 1
1-1研究動機與目的 1
1-2 研究流程與架構 3
第二章 文獻回顧 4
2-1混凝土之孔隙結構 4
2-1-1孔隙種類 4
2-1-2骨材效應 6
2-2飛灰 8
2-2-1飛灰化學反應 8
2-2-2飛灰物理特性 9
2-2-3飛灰含量對混凝土影響 9
2-3 混凝土耐久性評估 11
2-3-1快速氯離子滲透試驗 11
2-3-2加速氯離子傳輸試驗 13
2-3-3浸漬試驗 14
2-3-4比色法 14
第三章 試驗計畫 16
3-1試驗流程 16
3-2試驗材料 17
3-3 試體編號 18
3-4試驗方法與設備 18
3-4-1吸水率及孔隙率試驗 19
3-4-2快速氯離子滲透試驗RCPT 21
3-4-3加速氯離子傳輸試驗ACMT 23
第四章 結果與討論 26
4-1孔隙率試驗 26
4-2氯離子快速滲透試驗(RCPT) 34
4-2-1飛灰取代量及總電量 34
4-2-2初始電量及總電量 39
4-3 加速氯離子傳輸試驗ACMT 48
4-3-1 ACMT氯離子的傳輸歷程 48
4-3-2 非穩態傳輸係數Mnc 52
4-3-3穩態傳輸係數計算Ms 59
第五章 結論與建議 65
參考文獻 68
圖目錄
圖1-1 研究流程圖 3
圖2-1 混凝土孔隙結構與尺寸關係圖 5
圖2-2阻隔效應示意圖 6
圖2-3迂迴效應示意圖 7
圖2-4界面過渡區之示意圖 7
圖2-5比色法中氯離子穿透混凝土試片圖 15
圖3-1飛灰取代水泥量與齡期試驗歷程圖 16
圖3-2 試驗編號示意圖 18
圖3-3吸水率及孔隙率煮沸裝置 20
圖3-4試體真空設備圖 21
圖3-5 RCPT系統示意圖 23
圖3-6 ACMT系統示意圖 23
圖3-7 METROHM 702 SM型電位滴定儀 25
圖4-1吸水率與飛灰含量關係圖(齡期28天) 32
圖4-2吸水率與飛灰含量關係圖(齡期91天) 32
圖4-3孔隙率與飛灰含量關係圖(齡期28天) 33
圖4-4孔隙率與飛灰含量關係圖(齡期91天) 33
圖4-5飛灰含量與總電量關係圖(齡期28天) 35
圖4-6飛灰含量與總電量關係圖(齡期91天) 36
圖4-7 TL組時間與總電量關係圖(齡期28天) 39
圖4-8 TH組時間與總電量關係圖(齡期28天) 40
圖4-9 CL組時間與總電量關係圖(齡期28天) 40
圖4-9 CH組時間與總電量關係圖(齡期28天) 41
圖4-11 TL組時間與總電量關係圖(齡期91天) 41
圖4-12 TH組時間與總電量關係圖(齡期91天) 42
圖4-13 CL組時間與總電量關係圖(齡期91天) 42
圖4-14 CH組時間與總電量關係圖(齡期91天) 43
圖4-15氯離子傳輸歷程圖 45
圖4-16 CH組時間與陽極槽氯離子濃度關係圖 50
圖4-17 CL組時間與陽極槽氯離子濃度關係圖 50
圖4-18 TH組時間與陽極槽氯離子濃度關係圖 51
圖4-19 TL組時間與陽極槽氯離子濃度關係圖 51
圖4-20 CH組過渡時期階段之累積氯離子濃度曲線圖 55
圖4-20 CL組過渡時期階段之累積氯離子濃度曲線圖 56
圖4-22 TH組過渡時期階段之累積氯離子濃度曲線圖 56
圖4-23 TL組過渡時期階段之累積氯離子濃度曲線圖 57
圖4-24氯離子穿透試片之濃度與時間關係圖 58
圖4-25穩態階段之氯離子濃度與時間關係圖 59
圖4-26 CH組穩態階段之累積氯離子濃度曲線圖 62
圖4-27 CL組穩態階段之累積氯離子濃度曲線圖 62
圖4-28 TH組穩態階段之累積氯離子濃度曲線圖 63
圖4-29 TL組穩態階段之累積氯離子濃度曲線圖 63
表目錄
表2-1 CNS 3036 對飛灰的品質要求 10
表2-2混凝土抵抗氯離子穿透性關係表 12
表3-1混凝土配比設計 17
表4-1 TL組吸水率及孔隙率(28天) 27
表4-2 TH組吸水率及孔隙率(28天) 27
表4-3 CL組吸水率及孔隙率(28天) 28
表4-4 CH組吸水率及孔隙率(28天) 28
表4-5 TL組吸水率及孔隙率(91天) 29
表4-6 TH組吸水率及孔隙率(91天) 29
表4-7 CL組吸水率及孔隙率(91天) 30
表4-8 CH組吸水率及孔隙率(91天) 30
表4-9 TL組不同齡期總電量降低倍數表 36
表4-10 TH組不同齡期總電量降低倍數表 47
表4-11 CL組不同齡期總電量降低倍數表 47
表4-12 CH組不同齡期總電量降低倍數表 38
表4-13 TL組不同齡期初始電流降低百分比 44
表4-14 TL組不同齡期總電量降低百分比 44
表4-15 TH組不同齡期初始電流降低百分比 45
表4-16 TH組不同齡期總電量降低百分比 45
表4-17 CL組不同齡期初始電流降低百分比 46
表4-18 CL組不同齡期總電量降低百分比 46
表4-19 CH組不同齡期總電量降低百分比 47
表4-20 CH組不同齡期總電量降低百分比 47
表4-21各組配比之非穩態傳輸係數 58
表4-22各配比之穩態傳輸係數 64



參考文獻
1. A. M. Brandt, “Cement - based Composites : Materials, Mechanical Properties and Performance,” E & FN SPON, pp. 116 - 118, 1995.
2. J. F. Young, S. Mindness,“Concrete,”PrenticeHall,pp. 65 - 69, 1981.
3. J. F. Young, S. Mindness,“Concrete," Prentice Hall,pp.75 - 101, 1981.
4. 蘇錦江,“氯離子在水泥質複合材料界面過渡區傳輸行為之研究”,海洋大學材料所博士論文, pp.14- 17,2004。
5. 吳世康,“混凝土於不同環境溫度下抵抗氯離子之能力”,海洋大學材料所碩士論文, pp. 6 - 10,2009。
6. 林炳炎,“飛灰.矽灰.高爐爐石用在混凝土上”,第1 ~ 23頁及第268 ~ 278頁,1993。
7. ASTM C618-03“Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,”American Socity for Testing and Materials.
8. Y. M. Zhang,W. Y. Sun, and D. Han, “Hydration of high-volum fly ash cement pastes” Cem. Concr. Compos. 22(2000)445 - 452.
9. A. K. Suryavanshi,J. D. Scantlebury,S. B. Lyon, “Mechanism of Friedel, s salt formation in cement rich in tri-calcium aluminate,Cem. Concr. Res.26(1996)717 - 727.
10. Ravina, D, Mehta, P.K. “Properties of fresh concrete containing large amounts of fly-ash”,cement concrete research, Vol.16,1986.
11. AASHTO T259-80, “Resistance of Concrete to Chloride Ion Pentration, Standard specification for transportation materials and methods of sampling and testing”,1980.
12. 行政院公共工程委員會,“公共工程飛灰混凝土使用手冊”,第二章, pp.5 - 16, 1999。
13. M. S. Gani, ”Cement and Concrete”, Chapman & Hall, Fist edition, p.p.159~164, 1997.
14. ASTM C1202-97, ”Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration ”, 1997.
15. AASHTO T277-96,“Electrical Indication of Concrete,s Ability to Resist Choloride Ion Penetration,”Standard specification for transportation material and methods of sampling and testing,1996.
16. R. Feldman, L. R. Prudencio Jr. , and G. Chan,“Rapid chloridepermeability test on blended cement and other concrete: correlationsbetween charge, initial current and conductivity,”Cons. Build. Mat.13 p.p149-154, 1999.
17. C. Andrade, ”Calculation of chloride diffusion coefficient in concretefrom ionic migration measurement”, Cem. Concr. Res. 23 (1993)724-742.
18. T. H. Wee, A. K. Suryavanshi, and S. S. Tin, “Influence of aggregatefraction in the mix on the reliability of the rapid chloridepermeability”, Cem. Concr. Comp. 21. (1999) 59-72.
19. T. H. Wee, A. K. Suryavanshi, and S. S. Tin, “Evaluation of rapidchloride permeability test (RCPT) results for concrete containingmineral admixture”, ACI Mater. J.97 p.p.221-232, 2000.
20. M. H. Zhang, and O. E. Gjψrv, “Permeability of high – strengthlightweight concrete”, ACI Mater. J.88 p.p.463-469, 1991.
21. R. D. Hooton, “What is need in a permeability test for evalution ofconcrete quality, pore structure and permeability of cementitious100materials”, Materials Research Society Symposium Proceedings. 137 p.p.1459 - 1475, 1987.
22. C. C. Yang, S.W Cho, R. Huang, “The relationship between chargepassed and the chloride-ion concentration in concrete usingsteady-state chloride migration test” Cem. Concr. Res. 32. (2002)217-222.
23. W. Prince, R. Perami, M. Espagne, “Mechanisms involved in theaccelerated test of chloride permeability”, Cem. Concr. Res. 29.(1999) 687-694.
24. 王子豹,“不同電壓之加速氯離子傳輸試驗中比色法之影響”,海洋大學材料所碩士論文, pp. 7-10,2006。
25. C. C. Yang, S. C. Chiang, "A Rapid Method for Determination of the Chloride Migration Coefficient in Concrete Using Electrical Field," Journal of ASTM International, Vol. 5, No.4 (published online).
26. C. C. Yang, S. C. Chiang, L. C. Wang, “Estimation of the chloride diffusion from migration test using electrical current,” Construction and Building Material, pp. 1560-1567, 2007.
27. M. Collepardi, “Quick method to determine free and bound chlorides in concrete ,” Chloride Penetration into Concrete, pp.10-16, 1995.
28. ASTM C642-97, ”Standard Test Method for Density,Absorption and Voids in Hardened Concrete, ”Amercian Socity for Testing and Materials, 1997.
29. AASHTO T260-97, “Sampling and Testing for Chloride Ion in Concrete Raw Materials,” Standard specification for transportation materials and methods of sampling and testing, 1997.
30. P. Halamickova, R. J. Detwiler, “Water permeability and chloride ion diffusion in Portland cement mortars: Relationship to sand content and critical pore diameter,” Cement and Concrete Research, pp. 798-802, 1995.
31. ACI Committee 305 Report, Hot weather concreting, ACI Materials J88 (1991) 417–436
32. L. Tong, O. E. Gjørv, “Chloride diffusivity based on migration testing,” Cement and Concrete Research, pp. 973-982, 2001.
33. P. Halamickova, R. J. Detwiler, “Water permeability and chloride ion diffusion in Portland cement mortars: Relationship to sand content and critical pore diameter,” Cement and Concrete Research, pp. 798-802, 1995.
34. C. Andrade, M. Castellote, C. Alonso, C. Gonzalez, “Relation between colorimetric chloride penetration depth and charge passed in migration test of the type of standard ASTM C1202-91,” Cement and Concrete Research, pp. 417-421, 1999.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top