(3.92.96.236) 您好!臺灣時間:2021/05/09 00:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宗賢
論文名稱:鎂鋁混合粉末之機械合金化行為研究
論文名稱(外文):Mechanical Alloying of Mg-Al System
指導教授:李丕耀
指導教授(外文):Pee-Yew Lee
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:170
中文關鍵詞:鎂鋁粉末機械合金
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是探討組成MgxAl100-x粉末 (x=40、50、58.6、60、70)之鎂鋁純元素混合粉末的機械合金化行為,對所合成的粉末進行XRD、DSC、SEM等分析檢測結果。
Mg40Al60、Mg50Al50粉末於球磨處理六小時後的生成相為Al(Mg)過飽和固溶體相及非晶質相,無法形成相圖所示的β-Mg2Al3與γ-Mg17Al12平衡相;Mg58.6Al41.4與Mg60Al40粉末在球磨二至三小時後隱約有γ-Mg17Al12的繞射峰產生,球磨至六小時則可以形成γ-Mg17Al12平衡相;Mg70Al30之六小時球磨粉末的生成相符合相圖所預測之γ-Mg17Al12及Mg相。
MgxAl100-x粉末經過球磨處理後,難以形成β-Mg2Al3相,主要是因為β- Mg2Al3相的結構複雜且單位晶胞尺寸巨大所導致的。但經由熱處理過後Mg40Al60合金粉末可以形成γ-Mg17Al12及β-Mg2Al3相,且在350 ℃持溫30分鐘可以完全形成β-Mg2Al3相。Mg50Al50球磨粉末經由200℃熱處理過後幾乎以γ-Mg17Al12相為主,但在300 ℃熱處理後便有β-Mg2Al3介金屬化合物相。而組成Mg58.6Al41.4、Mg60Al40和Mg70Al30經由熱處理過後其γ-Mg17Al12相的結晶性更好。
透過Williamson-Hall formula公式可了解在球磨過程中磨球之間的撞擊所給予粉末的能量,使得Mg、Al在球磨時應變量逐漸上升,此導致Mg58.6Al41.4、Mg60Al40在球磨三小時開始生成γ-Mg17Al12。
This study is to explore the mechanical alloying behavior that the composition of MgxAl100-x powders (x = 40,50,58.6,60,70) is mixed powders of Mg-Al pure elements, and then the synthesized powder will analysis and detection after the XRD, DSC, SEM, etc.

Mg40Al60 and Mg50Al50 powders after six hours milling process are in the generation phase of Al (Mg) supersaturated solid solution phase and amorphous phase, not formed β-Mg2Al3 and γ-Mg17Al12 equilibrium phase as shown in the phase diagram; Mg58.6Al41 .4 and Mg60Al40 powders in the milling after two to three hours are looming γ-Mg17Al12 diffraction peak, and keep milling to six hours can be formed γ-Mg17Al12 equilibrium phase; the generation phase of six hours milled Mg70Al30 powder t is full compliance with the phase diagram and it’s in the majority of γ-Mg17Al12 and Mg phase.

MgxAl100-x powders after milling is difficult to form β-Mg2Al3 equilibrium phase, its cause of the β-Mg2Al3 phase is with the complex structure and the huge unit cell dimensions. But Mg40Al60 alloy powder after heat treatment can form γ-Mg17Al12 and β-Mg2Al3 phase, and fully formed β-Mg2Al3 phase when the temperature holds at 350 ℃ 30-minute. Mg50Al50 milled powder a is almost γ-Mg17Al12 phase after 200 ℃ heat treatment, but, the β-Mg2Al3 intermetallic compound phase is occurred after heat treatment at 300 ℃. Which consists of Mg58.6Al41.4, Mg60Al40 and Mg70Al30 have better γ-Mg17Al12 crystalline phase after the heat treatment

The impact between the balls of energy given with powder can be understood by Williamson-Hall formula formula in the milling process, and making the strain of Mg, Al increase gradually in the milling, this result is lead Mg58.6Al41.4, Mg60Al40 to start generating γ-Mg17Al12 from three hours in the milling.




目錄

中文摘要.Ⅰ
英文摘要.Ⅲ
目錄.Ⅴ
表目錄.Ⅷ
圖目錄.Ⅹ

第一章 前 言.1
第二章 文獻回顧.5
第三章 實驗步驟 .79
第四章 結果與討論 .85
第五章 結 論..140
參考文獻..142

[1] M. J. Starink, A.M. Zahra, Acta Meter 46 (1998) 3381–3397.
[2] H. L. Luo, C. C. Chao, P. Duwez, Trans Metall. Soc. AIME 230
(1964) 1488–1490.
[3] M. Schoenitz, E.L. Dreizin, J. Mater. Res. 18 (2003) 1827–1836.
[4] S. Scudino, S. Sperling, M. Sakaliyska, C. Thomas, M. Feuerbacher,
K. B. Kim, H. Ehrenberg, J. Eckert, Acta Mater. 56 (2008)
1136–1143.
[5] S. Scudino, M. Sakaliyska, K. B. Surreddi, J. Eckert, J. Alloys
Compd. 483 (2009) 2–7.
[6] F. Zhou, X. Z. Liao, Y. T. Zhu, S. Dallek and E. J. Lavernia, Acta
Mater. 51 (2003) 2777.
[7] Y. S. Park, K. H. Chung, N. J. Kim and E. J. Lavernia, Mater. Sci.
Eng. A 374 (2004) 211.
[8] G. J. Fan, G. Y. Wang, H. Choo, P. K. Liaw, Y. S. Park, B. Q. Han
and E. J. Lavernia, Scripta Mater. 52(2005) 929.
[9] K. M. Youssef, R. O. Scattergood, K. L. Murty and C. C. Koch.
Scripta Mater. 54 (2006) 251.
[10] B. T. McDermott, C. C. Koch, Scripta Metall. 20 (1986) 669–672.
[11] A. R. Yavari, P. J. Desre´, T. Benameur, Phys. Rev. Lett. 68 (1992)
2235–2238.
[12] C. C. Koch, Nanostruct Mater. 2 (1993) 109–129.
[13] A. Zaluska, L Zaluski, J. O. Stro¨m-Olsen, J. Alloys Compd. 288
(1999) 217–225.

[14] J. Eckert, L. Schultz, K. Urban, Appl. Phys. Lett. 55 (1989)
117–119.
[15] C. C. Koch, Scripta Mater. 34 (1996) 21–27.
[16] J. L. Murray, Bull Alloy Phase Diagram 3 (1982) 60–74.
[17] H. L. Su, M. Harmelin, P. Donnadieu, C. Baetzner, H. J. Seifert, H.
L. Lukas, et al. J Alloys Compd. 247 (1997) 57–65.
[18] Y. Zuo, Y. A. Chang. Calphad 17 (1993) 161–174.
[19] M. Michael Anderson, ASM specialty handbook/magnesium and
magnesium alloys, 1999.
[20] D. Singh, C. Suryanarayana, L. Mertus, R.-H. Chen Intermetallics 11
(2003) 373–376.
[21] W. Bungardt and F. Bollenrath, "On the Diffusion of Magnesium in
Aluminum", Z. Metallkd., 11, 377-383 (1938) in German.
[22] D. Hanson, and M. L. V. Gayler, "The Constitution of the Alloys of
Aluminium and Magnesium", J. Inst. Met., 24, 201-232 (1920).
[23] G. Siebel, and H. Vosskuehler, "Determination of the Solubility of
Magnesium in Aluminum", Z. Metallkd., 31(12), 359-362 (1939) in
German.
[24] D.M. Poole and H.J. Axon, "Lattice-Spacing Relationships in
Aluminum-Rich Solid Solutions of the Aluminum-Magnesium and
Aluminum-Magnesium-Copper Systems", J. Inst. Met., 80, 599-604
(1951-1952).
[25] J. E. Dorn, P. Pietrokowsky and T. E. Tietz, "The Effect of Alloying
Elements on the Plastic Properties of Aluminum Alloys", Trans.
AIME, 188, 933-943 (1950).

[26] W. J. Helfrich and R. A. Dodd, "Density Anomalies in Binary
Aluminum Solid Solutions", Trans. AIME, 224, 757-762 (1962).
[27] G. V. Raynor, "The Lattice Spacings of the Primary Solid Solutions
in Magnesium of the Metals of Group IIIB and of Tin and Lead",
Proc. Roy Soc. (London), 180, 107-121 (1942).
[28] F. W. Von Batchelder and R. F. Raeuchle, "Lattice Constants and
Brillouin Zone Overlap in Dilute Magnesium Alloys", Phys. Rev.,
105(1), 59-61 (1957).
[29] R. S. Busk, "Lattice Parameters of Magnesium Alloys", Trans.
AIME, 188, 1460-1464 (1950).
[30] M. Kawakami, "On the Equilibrium Diagram of the
Aluminum-Magnesium System", anniversary volume dedicated to
K. Honda, Sci. Rept. Tohoku Univ., 727-747 (1936).
[31] F. Laves and K. Moeller, "Contribution to the Understanding of the
Aluminum-Magnesium System", Z. Metallkd., 30(7), 232-235
(1938) in German.
[32] H. Perlitz, "Crystal Structure of fl-Aluminium- Magnesium Alloy",
Nature, 154(3915), 606 (1944).
[33] T. B. Massalski, editor. Binary alloy phase diagrams. Metals Park
(OH): ASM International; 1986.
[34] S. Samson, "The Crystal Structure of the Phase Mg2Al3", Acta
Cryst., 19, 401-413 (1965).
[35] F. Laves and K. Moeller, "Contribution to the Understanding of the
Aluminum-Magnesium System", Z. Metallkd., 30(7), 232-235
(1938) in German.

[36] B. Predel and K. Hulse, "Metastable Phases in the
Aluminium-Magnesium System", Z. MetaUkd., 69 (11 ), 690-696
(1978) in German.
[37] P. Schwellinger, J.Timm, H.Warlimont, and H. Zogg, "Diffusionless
Phase Transformations in A14Ca and A13Mg2", Proc. IntL Conf.
Martensitic Transf. ICOMAT, June 24-29(1979).
[38] J. Timm, and H. Warlimont, "A Diffusionless Phase Transformation
of A13Mg2", Z. Metallkd., 71 (7), 434-437 (1980).
[39] P.V. Mourik, N.M. Maaswinkel, T.H. Dekeijser, E.J. Mittemeijer, J.
Mater. Sci. 24 (1989) 3779–3786.
[40] M. J. Starink, A.M. Zahra, Phil. Mag. A 76 (1997) 701–714.
[41] M.V. Rooyen, J. A. S. Maartensdijk, E.J. Mittemeijer, Metall. Trans.
A 19A (1988) 2433–2443.
[42] D. Hamana, L. Baziz, M. Bouchear, Mater. Chem. Phys. 84 (2004)
112–119.
[43] D. Hamana, M. Bouchear, M. Betrouche, A. Derafa, N.Y.
Rokhmanov, J. Alloys Compd. 320 (2001) 93–102.
[44] M. Slabanja, G. Wahnstrom, Acta Mater. 53 (2005) 3721–3728.
[45] M. Bernole. and R. Graf, "New Observations on Pre- Precipitation
Phenomena in A1-Mg and A1-Mg-Zn Alloys", C. R. Acad. Sci. Paris
B, 274, 1233-1236 (1972) in French
[46] M. Bernole , R. Graf and P. Guyot , "Electron Microscope and X-ray
Study of Precipitation in an Al-10 Mg Alloy at Ambient
Temperature", Philos. Mag., 28(4), 771-782 (1973).


[47] E. K. Boudili, M. F Denanot and A. Dauger, , "Decomposition of
Supersaturated Solid Solutions of A1-Mg at 20 C", Scripta Met., 11,
543-548 (1977).
[48] C. Gault, A Dauger and P. Boch, "Decomposition of
Aluminium-Magnesium Solid Solutions Studied by Ultrasonic
Measurements of Elastic Properties and Electron Microscopy", Acta
Met., 28, 51-60 (1980).
[49] T. Sato, Y. Kojima, T. Takahashi, Metall. Trans. A 13A (1982)
1373–1378.
[50] K. Kumada, Y.Sumitomo, S.Nenno and M.Yamamoto, "Formation
of L12 Type SuperlatticeAl3Mg in Liquid-Quenched A1-Mg
Alloys", J. Jpn. Inst. Met., 34, 1062-1066 (1970) in Japanese.
[51] M. Bernole, Thesis, University of Rouen, Rouen, France, 1974.
[52] M. Bernole, J.Raynal and R. Graf, "Structure and Orientation of
Precipitates Appearing in Quenched A1-Mg Alloys with 10 pct
Magnesium", J. Microsc., 8, 831-840 (1969).
[53] M. J Guillot and J. Grilhe, "Effect of Cooling Rate on the State of
Solid Solutions After Quenching: A1-7 pct Mg", Mere. Sci. Rev.
MetaU., No. 6, 377-385 (1970) in French
[54] T. B. Massalski, Binary Alloy Phase Diagrams, Materials Park, OH:
ASM International; 1992.
[55] Y. L. Shoshin, R.S. Mudryy, E.L. Dreizin, Combust. Flame 128
(2002) 259–269.
[56] M. Schoenitz, E.L. Dreizin, E.J. Shtessel, Propul. Power 19 (3)
(2003) 405–412.

[57] C.R. Clark, C. Suryanarayana, F.H. Sam Froes, Solid solubility
extension in lightweight alloys by mechanical alloying, in: F.H.
Froes, C. Suryanarayana, C.M. Ward-Close (Eds.), Synthesis
Processing of Lightweight Metallic Materials, Minerals, Metals and
Materials Society, 1995, pp. 175–182.
[58] D. L. Zhang, T.B. Massalski, M.R. Paruchuri, Metall. Mater. Trans.
A 25 (1994) 73–79.
[59] A. Calka, W. Kaczmarek, J.S. Williams, J. Mater. Sci. 28 (1993)
15–18.
[60] M. Cohen, B. H. Kear, R. Mehradian, Rapid Solidification
Procgressing-An outbook. Rapidly Solidification Processing:
Priciples and Technology-2’, Mehradian R, Kear B H, Cohen M
(eds.). Clatior’s Publ. Div. , Baton Rouge, LA, 1980, 1-23
[61] R. Mehardian Rapid Solidification. Int. Metals Review, 27: 185-208
[62] P. W. Duwez, R. H. Willwns. Rapid Quenching of Liquid Alloys
Trans. Met. Soc. AIME, 1963, 227: 262
[63] G. W. F. Padoe, E. Butler, D.Gelder Rapid Quenching by the Taylor
Wire Technique. J. Metal Sci. , 1971, 13: 786
[64] M. C. Narasimhan Continuous Casting Method for Metallic
Amorphous Strips. US Patent 4221257, 1980.
[65] C. Suryanarayana, S.K Tiwari and T. R Anantharaman, "A New
Metastable Phase in theAluminium-Magnesium System", Z.
Metallkd., 69, 155-156 (1978).
[66] Pol Duwez and R. H. Willend: Trans. Met. Soc. AIME, 1963, vol.
227, pp. 362-365
[67] W. Klement, Jr.: J. Inst. Metals, 1961, vol. 90, pp.27-30.
[68] S. S. CHO, B. S. CHUN, C. W. WON, S. D. KIM, B. S. LEE, H.
BAEK Rapidly Solidified Materials Research Center (RASOM),
School of Materials Engineering, Chungnam National University,
Taedok Science Town, Taejon 305-764, South Korea
[69] J. S. Benjamin, Sci. Am. 234 (1976) 40–48.
[70] J. S. Benjamin, Metal Powder Report 45 (1990) 122.
[71] C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1–184.
[72] M. O. Lai, L. Lu, Mechanical Alloying, Kluwer Academic
Publishers, Boston, MA, 1998.
[73] J. S. Benjamin, Proceedings of the Novel Powder Metall. World
Congress, San Francisco, CA, USA,21–26 June, 1992, in: Advances
in Powder Metallurgy, Vol. 7, Metal Powder Industries Federation,
Princeton, NJ, 1992, p. 155.
[74] J.-C. Crivello, T. Nobuki, T. Kuji, Intermetallics 15 (2007)
1432–1437.
[75] J. Eckert, L. Schultz and E. Hellstern, J. Appl. Phys. 64 (1988) 3224.
[76] R. B. Schwarz and R. R. Petrich, J. Less-Comm. Metals 140 (1988)
171.
[77] R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett. 51 (1983) 415.
[78] C. S. Barrett and T. B. Massalski: Strucyure of Metals, 3rd ed. ,
McGraw-Hill, New York, NY, 1966, p. 155.
[79] C. Suryanarayama, Mechanical Alloying and Milling, Marcel
Dekker, New York, 2004.



[80] S. Scudino, M Sakaliyska, K. B. Surreddi and J Eckert,The 13th
International Conference on Rapidly Quenched and Metastable
Materials IOP Publishing Journal of Physics: Conference Series 144
(2009) 012019.
[81] X. P. Xiu, in: D. Ph. Thesis, KULeuven, Belgium, 1994, p. 34.
[82] W. E. Kuhn, A.N. Patel, Modern developments in powder
metallurgy, principles and process, in: H.H. Hausner, H.W. Ants,
G.D. Smith (Eds.), Proceedings of the 1980 International Powder
Metall. Conference, 22–27 June 1980, Vol. 12, Metal Powder
Industries Federation, American Powder Metall. Institute, Princeton,
NJ, 1980, p. 195.
[83] T. S. Suzuki, M. Nagumo, Mater. Sci. Forum 179–181 (1995) 189.
[84] P. S. Gilman, W. D. Nix, Metall. Trans. A 12A (1981) 813.
[85] A. Arias, Chemical Reactions of Metal Powders With Organic and
Inorganic Liquids During Ball Milling, NASA TN D-8015, 1975.
[86] L. Lu, M.O. Lai, S. Zhang, Key Eng. Mater. 104–107 (1995) 111.
[87] A. M. Harris, G. B. Schaffer, N. W. Page, in: J. J. deBarbadillo, F.H.
Froes, R. Schwarz (Eds.), roceedings of the 2nd International
Conference On Structural Applications of Mechanical Alloying,
Vancouver, British Columbia, Canada, 20–22 Sept., ASM
International, Materials Park, OH, USA, 1993, p. 15.
[88] R. B. Schwarz, P. B. Desch, S. R. Srinlvasan, in: J.J. deBarbadillo,
F. H. Froes, R. Schwarz(Eds.),Proceedings of the 2nd International
Conference On Structural Applications of Mechanical Alloying,
Vancouver, British Columbia, Canada, 20–22 Sept., ASM
International, Materials Park, OH, USA, 1993, p. 227.
[89] J. R. Groza, M. J. H. Tracy, in: J. J. deBarbadillo, F. H. Froes, R.
Schwarz (Eds.), Proceedings of the 2nd International Conference On
Structural Applications of Mechanical Alloying, Vancouver, British
Columbia, Canada, 20–22 Sept., ASM International, Materials Park,
OH, USA, 1993, p. 327.
[90] M. Umemoto, T. Itsukaichi, J. Cabanas-Moreno, I. Okane, in: J. J.
deBarbadillo, F. H. Froes, R. Schwarz (Eds.), Proceedings of the 2nd
International Conference On Structural Applications of Mechanical
Alloying, Vancouver, British Columbia, Canada, 20–22 Sept., ASM
International, Materials Park, OH, USA, 1993, p. 245.
[91] A. Malchere, E. Gaffet, in: J.J. deBarbadillo, F.H. Froes, R. Schwarz
(Eds.), Proceedings of the 2nd International Conference On
Structural Applications of Mechanical Alloying, Vancouver, British
Columbia, Canada, 20–22 Sept., ASM International, Materials Park,
OH, USA, 1993, p. 297.
[92] L. Lu, Y.F. Zhang, Journal of Alloys and Compounds 290 (1999)
279–283.
[93] J. Gubicza, M. Kassemc, G. Ribárik, T. Ungár, Materials Science
and Engineering A 372 (2004) 115–122.
[94] T. Unga´r, Scripta Mater 51(2004) 777.
[95] M. Bououdina, Z. X. Guo. J. Alloys Compounds 336 (2002)
222–231.
[96] M. Schoenitz, Y. Shoshin, R. Mudryy, E. Dreizin. In: Chemical and
physical processes of combustion [2001 technical meeting of the
Eastern States Section of the Combustion Institute], Hilton Head,
SC, 2001. p. 147–150.
[97]Masatake ABE, Tohru NOBUKI and Toshiro KUJI, Journal of Japan
Institute of Light Metals, Vol. 59, No. 2 (2009), pp. 75-80


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔