跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃雅琪
研究生(外文):Ya-Chi Huang
論文名稱:陡坡與緩坡河道洪水預警系統之建立
論文名稱(外文):Development of real-time flood warning system for steep and mild channels
指導教授:李光敦李光敦引用關係
指導教授(外文):Kwan Tun Lee
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:127
中文關鍵詞:運動波模式動力波模式洪水預警系統
外文關鍵詞:kinematic-wave modeldynamic-wave modelflood warning system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
台灣地文環境特殊,山勢高聳地形陡峻,山區集流時間甚短,加上近年來受到全球氣候變遷的衝擊,極端降雨發生頻率增加,常於颱風及夏季暴雨期間帶來大量豪雨,造成山區逕流快速匯入河川,以致河川水位暴漲,若排水系統無法即時疏排逕流,則短時間內將造成下游居民生命安全與財產之威脅,故建立洪水預警系統實有其必要性,可於洪水來臨期間進行即時河道水位預測,提供決策者疏散居民及救災人員提前救災準備之相關資訊,以減輕災害的可能性。
本研究所建立之河道洪水預警系統,是以國內常用於河系演算之NETSTARS模式為主要架構。然而因台灣山區坡陡之特性,於動力波河道演算模式時常會發生數值不易收斂,故本研究於河道演算模式中加入常用於計算陡坡渠道之運動波模式,以期解決該數值演算之不穩定問題。為考慮運動波模式僅適用於陡坡渠道,及動力波模式於陡坡演算上之問題,故研究首先利用因次分析推求影響運動波與動力波交界斷面之獨立變數,而後以研究中所建立之結合運動波與動力波之河道演算模式,進行一連串運動波與動力波交界斷面因子之數值試驗,試驗結果顯示,於矩形試驗渠道中,運動波與動力波交界斷面位置,可以渠流運動水流數與福祿數之關係來描述;而自然河川渠道中,則可單純以福祿數為運動波與動力波模式作分界,如此確立動力波及運動波之適用範圍,提供後續河道洪水演算之參考應用。
研究中蒐集大里溪流域水文、地文及歷年颱洪紀錄資料,應用地形性降雨逕流模式,推估降雨於次集水區及殘流域區塊所產生之逕流,並將各區塊逐時之逕流於鄰近河道斷面注入河道,以進行河道水位預測工作,最後將結果於預警系統網路平台展示。研究結果顯示,洪水預警系統於大里溪流域模擬結果良好;故颱洪期間可利用本系統進行即時河道水理演算,以達到河道洪水預警之目的。

Taiwan has steep hillslope and usually receives concentrated rainfall during typhoons and summer rainstorms, which usually result in a large amount runoff peak. More recently, impacts from global climate change induce more serious flood disaster to cause tremendous losses. In severe rainstorms, if drainage system can not drain stormwater in time from overland areas to channels, serious hazard will occur in downstream flat areas. Hence, a warning system providing flooding information in advance for evacuation to mitigate the possible disaster is considered important.
In this study, flood routing in channel is basically based on the NETSTARS (Network of Stream Tube model for Alluvial River Simulation) model. Since dynamic-wave model usually resulting in numerical instability in steep channel reaches, a kinematic-wave approximation was adopted for flood routing to provide a numerically stable model. In considering the kinematic-wave method can only be applied to steep channel reaches with acceptable precision, a dimensional analysis was performed to determine the independent variables which significantly affect the choosing of the demarcation point to separate dynamic- and kinematic-wave routing methods. Series numerical experiments have been performed in this study. Numerical results show that the hydraulic characteristics at the demarcation in channel with rectangular channel cross sections can be described by using kinematic-flow number and Froude number, and they can only be correlated to Froude number in channel with natural irregular cross sections.
Geomorphologic and hydrological records from Dali River basin were collected in this study. A geomorphology-based runoff model was used to estimate storm runoff from tributaries and channel lateral-flow areas and then adjoin into the channel-flow routing system for water stage forecasting on a web platform. Simulated results generated from the proposed flood routing system were found consistent with the flow records. It is therefore promising to apply the developed methodology for a real-time flood warning system in practice.

摘要 i
Abstract iii
目錄 v
表錄 vii
圖錄 ix
第一章 導論 1
1.1 研究目的 1
1.2前人研究 1
1.2.1 NETSTARS河道演算模式之相關研究 2
1.2.2數值高程模式之相關研究 3
1.2.3運動波-地貌瞬時單位歷線模式之相關研究 6
1.2.4系統整合與視窗作業環境之相關研究 10
1.3研究方法 12
第二章 河道洪水波演算模式 13
2.1河道演算模式 13
2.1.1動力波理論 14
2.1.2運動波理論 18
2.1.3下游邊界條件穩定方法 22
2.2動力波及運動波河道演算之適用範圍 24
第三章 河道洪水預警系統建立與應用 33
3.1研究集水區概述 33
3.2集水區降雨推估 34
3.3集水區自動分區與地文特性分析 34
3.4即時河道入流量之推求 36
3.4.1次集水區逕流演算-運動波-地貌瞬時單位歷線 36
3.4.2殘流域逕流演算-運動波-平面漫地流 40
3.4.3河道入流推估方法結果比較 42
3.5即時河道演算模式 43
3.6即時河道水位校正 45
3.7洪水預警系統平台 48
第四章 結論與建議 51
4.1結論 51
4.2建議 52
參考文獻 53
附錄一 雙掃法 99
附錄二 應用地理資訊系統及數值高程模式進行集水區地文分析 106
2.1 ArcView地理資訊系統 106
2.2數值高程模式之資料結構 107
2.3集水區劃分及地文因子推求 108
附錄三 地貌瞬時單位歷線 112


台灣水利局規劃總隊 (1989) “大里溪治理基本計畫,” 台中。
李光敦,江申 (1997). “面積門檻值對集水區地文參數與水文模擬之影響,” 中華水土保持學報, 28(1), 21-32.
李光敦,江申,施匯銘 (1998). “利用數值高程資料進行集水區逕流模擬(一),” 農委會專題研究計畫成果報告,87 科技-1.7-林-01-3(8)號。
李光敦,施匯銘,吳英民,楊銘賢 (1999a). “利用數值高程資料進行集水區逕流模擬(二),” 農委會專題研究計畫成果報告,88 科技-1.7.1-林-01(3-8)號。
李光敦,俞維昇,楊銘賢,施匯銘 (1999b). “瑞伯颱風與芭比絲颱風汐止地區洪災分析報告,” 國立臺灣海洋大學河海工程研究所研究報告,台灣士林地方法院檢查署委託。
李光敦,楊銘賢,鄭璟生,張進鑫 (2000). “流域整體規劃河川集水區數值地形資訊系統建立(一),” 國立臺灣海洋大學河海工程研究所研究報告,經濟部水利處水利規劃試驗所委託。
李光敦 (2005). 水文學,五南出版社,台北。
李光敦,俞維昇,張進鑫,林怡廷,洪夢秋,鍾逸茹,陳耐錦,廖聿勳,徐郁涵 (2006). “流域整體規劃與淹水資訊系統建置計畫(1/3),” 國立臺灣海洋大學河海工程研究所研究報告,經濟部水利處水利規劃試驗所委託。
李光敦,俞維昇,林怡廷,洪夢秋,林立峰,許淑貞 (2007). “流域整體規劃與淹水資訊系統建置計畫(2/3),” 國立臺灣海洋大學河海工程研究所研究報告,經濟部水利處水利規劃試驗所委託。
李光敦,俞維昇,林怡廷,洪夢秋,徐郁涵,廖聿勳,林立峰,許淑貞 (2009). ”流域數值地形系統淹水模組開發及建置之研究-以大里溪流域為例(1/3),” 國立臺灣海洋大學河海工程研究所研究報告,經濟部水利處水利規劃試驗所委託。
劉興維 (2010). “區塊式淹水模式於地理資訊系統平台之建立,” 國立臺灣海洋大學河海工程研究所碩士論文。
郭權億 (2010). ”輸砂模式應用於陡坡溪流河床變遷之適用性研究-以高山溪為例,” 國立成功大學水利及海洋工程研究所碩士論文。
謝慧民 (1996). “網路型河川擬似二維沖淤行為之數值模擬,” 國立臺灣大學土木工程學研究所博士論文。
謝慧民,李鴻源,黃淑金,陳伯飛 (2004). “複雜河系沖淤模式NETSTARS V2.0使用技術手冊,” 致遠管理學院資訊管理學系研究報告第9303號。
許盈松,李鴻源 (2002). “南崁溪河水堰泥砂淤積之研究,” 臺灣水利,第50卷,第4期,45-54。
施上粟,李鴻源,胡通哲 (2004). “台中柳川應用生態工法於魚類棲地改善之研究,” 中華水土保持學報,,第35卷,第3期,229-239。
施上粟,李鴻源,許志揚,游蕙綾 (2005). “關渡紅樹林植群變遷之衝擊評估,” 臺灣水利,第53卷,第2期,31-53。
王傳益,劉建榮,許少華,黃滄隆 (2006). “橋樑上下游之深水槽治理規劃-以濁水溪為例,” 臺灣水利,第54卷,第3期,1-8。
王國榮 (2007). ASP.NET網頁製作教本,旗標出版社,台北。
Ackers, P. (1958). “Resistance of fluids flowing in pipes and channels.” Hydraulics Research Paper No. 1, Her Majesty's Stationary Office, London.
Agnese, C., D’asaro, D., and Giordano, G. (1988). “Estimation of the time scale of the geomorphologic instantaneous unit hydrograph from effective streamflow velocity,” Water Resources Research, 24(7), 969-978.
Berod, D. D., Singh, V. P., and Musy, A., (1999). “A geomorphologic kinematic-wave (GKW) model for estimation of floods from small alpine watersheds,” Hydrological Processes, 13, 1391-1416.
Brasington, J., and Richard, K. (1998). “Interaction between model predictions, parameters and DTM scales for TOPMODEL,” Computer & Geosciences, 24(4), 299-314.
Carnahan, B., Luther, H. A., and Wilks, J. O. (1969). Applied Numerical Methods, John Wiley and Sons Inc., New York.
Cheng B. L. M. (1982). “A study of geomorphologic instantaneous unit hydrograph,” Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Univ. of Illinois at Urbana-Champaign.
Chiang, S., Tachikawa, Y., and Takara, K. (2007). “Hydrological model performance comparison through uncertainty recognition and quantification,” Hydrological Processes, 21, 1179-1195.
Choi, J. Y., Engel B. A., and Chung H. W. (2002). “Daily streamflow modeling and assessment based on the curve-number technique,” Hydrological Processes, 16(16), 3131-3150.
Chow, V. T. (1959). Open-Channel Hydraulics, McGraw-Hill, New York.
Chow, V. T., Maidment, D. R., and Mays, L. W. (1988). Applied Hydrology, McGraw-Hill, New York, USA.
Clark, C. O. (1945) “Storage and the unit hydrograph,” Tran., ASCE, 110, No. 2261, 1419-1446.
Collins, S. H., and Moon, G. C. (1981). “Algorithms for dense digital terrain models,” Photogram. Eng. And Remote Sensing, 47, 71–76.
Courant, R., and Friedrichs K. O. (1948). Supersonic Flow and Shock Wave, Interscience Publishers, New York.
Debarry, P. A., and Carrington, J. T. (1990). “Computer watersheds,” Civil Engineering, ASCE, 60(7), 68-70.
Douglas, D. H. (1986). “Experiments to locate ridges and channels to create a new type of digital elevation model,” Cartographica, 23(4), 29-61.
Dyhouse, G., Hatchett, J., Benn, J., and Totz, C. (2003). Floodplain modeling using HEC-RAS, Haestad Press, Waterbury, CT USA.
Endreny, T. A., and Wood, E. F. (2001). “Representing elevation uncertainty in runoff modeling and flow path mapping,” Hydrological Processes, 15, 2223-2236.
Ford, D., and Killen, J. (1995). “PC-based decision support system for Trinity River, Texas.” Journal of Water Resources Planning and Management, 113(2), 177-190.
Fread, D. L. (1974). “Numerical properties of implicit four-point finite difference equations of unsteady flow.” NOAA Technical Memorandum NWS HYDRO-18.
Gupta, V. K., Waymire, E., and Wang, C. T. (1980). “A representation of an instantaneous unit hydrograph from geomorphology,” Water Resources Research, 16(5), 855-862.
Helmlinger, K. R., Kumar, P., and Foufoula-Georgiou, E. (1993). “On the use of digital elevation model data for hortonian and fractal analysis of channel networks,” Water Resources Research, 29(8), 2599-2613.
Henderson, F. M., and Wooding, R. A. (1964). “Overland flow and groundwater flow from a steady rainfall of finite duration,” Journal of Geophysical Research, 69(8), 1531-1540.
Holly, F. M.,Yang, J. C., and Spasojevic, M, Numerical Simulation of Water and Sediment Movement in Multi-Connected Networks of Mobile-Bed, Iowa Institute of Hydraulic Research, Limited Distribution Report No.131, The University of Iowa, Iowa City, Iowa, USA, 1985.
Holly, F. M.,Yang, J. C., Schovarz, P., Scheefer J., Hsu, S. H., and Einhellig, R., CHARIMA Numerical Simulation of Unsteady Water and Sediment Movement in Multiply Connected Networks of Mobile-Bed Channel, IIHR Report No.343, The University of Iowa, Iowa City, Iowa, USA, 1990.
Horritt, M. S., and Bates, P. D. (2001). “Effects of spatial resolution on a raster based model of flood flow,” Journal of Hydrology, 253, 239-249.
Hsieh, L. S., and Wang, R. Y. (1999). “A semi-distributed parallel-type linear reservoir rainfall-runoff model and its application in Taiwan,” Hydrological Processes, 13, 1247-1268.
Hsu, Y.-S., and Hsu, Y.-H. (2009). “Impact of earthquake-induced dammed lakes on channel evolution and bed mobility: Case study of the Tsaoling landslide dammed lake,” Journal of Hydrology, 374, 43-55.
Jenson, S. K., and Domingue, J. O. (1988). “Extracting topographic structure from digital elevation data for geographic information system analysis,” Photogrametric Engineering and Remote Sensing, 54(11), 1593-1600.
Jin, C.-X. (1992). “A deterministic gamma-type geomorphologic instantaneous unit hydrograph based on path types,” Water Resources Research, 28(2), 479-486.
Johnson, L. E. (1989). “MAPHYD-A digital map-based hydrologic modeling system.” Journal Photogrammetric Engineering and Remote Sensing. American Society for Photogrammetry and Remote Sensing.
Johnson, D. L., and Miller, A. C. (1997). “A spatially distributed Hydrologic model utilizing raster data structure,” Computers & Geosciences, 23(3), 267-272.
Kroll, C. N., Luz, J., Allen, B., and Vogel, R. M. (2004). “Developing a watershed characteristics database to improve low streamflow prediction,” Journal of Hydrologic Engineering, ASCE, 9(2), 116-125.
Leavesly, G. H., and Stannard, L. G. (1990). Application of remotely sensed data in a distributed-parameter watershed model, in Kite, G. W., and Wankiewicz, eds., Proceeding of Workshop on Applications of Remote Sensing in Hydrology: National Hydrologic Research Center, Environment Canada, 47-64.
Lee, C. S., Li, X., Shi, W., Cheung, S. C., and Thornton, I. (2006). “Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics,” Science of the Total Environment, 356, 45–61.
Lee, K. T. and Yen, B. C. (1997). “Geomorphology and kinematic-wave based hydrograph derivtion,” Journal of Hydraulic Engineering, ASCE, 123(1), 73-80.
Lee, K. T. (1998). “Generating design hydrographs by DEM assisted geomorphic runoff simulation: a case study,” Journal of the American Water Resources Association, 34(2), 375-384.
Lee, K. T., Chang, C.-H., Yang, M.-S., and Yu, W.-S. (2001). “Reservoir attenuation of floods from ungauged watersheds,” Hydrological Sciences Journal, 46(3), 349-362.
Lee, K. T., and Chang C.-H. (2005). “Incorporating subsurface-flow mechanism into geomorphology-based IUH modeling,” Journal of Hydrology, 311, 91–105.
Lee, K. T., Chen, N.-C., and Gartsman, B. I. (2009). “Impact of stream network structure on the transition break of peak flows,” Journal of Hydrology, 367, 283–292.
Lee, K. T., and Yang, C.-C. (2010). “Estimation of sediment yield during storms based on soil and watershed geomorphology characteristics,” Journal of Hydrology, 382, 145–153.
Liggett, J. A. (1975). “Stability,” Unsteady Flow in Open Channels, Water Resources Publications, Fort Collins, Colorade.
Liggett, J. A., and Cunge, J. A. (1975). “Numerical Methods of Solution of the Unsteady flow equations,” Unsteady Flow in Open Channels, Water Resources Publications, Fort Collins, Colorade.
Lindsay, J. B., and Creed, I. F. (2005). “Removal of artifact depressions from digital elevation models: Towards a minimum impact approach,” Hydrological Processes, 19, 3113-3126.
Madiment, L. B. (1991). “GIS and hydrologic modeling,” Proc. 1 symposium / Workshop on GIS and Environmental Modeling Boulder, Colorado.
Mancini, M., and Rosso. R. (1989) “Using GIS to assess spatial variability of SCS curve number at the basin scale,” New Direction for Surface Water Modeling, 181, 435-444.
Meselhe, E. A., and Holly Jr., F. M. (1997). “Invalidity of Preissmann Scheme for Transcritical Flow,” Journal of Hydraulic Engineering, ASCE, 123(7), 652-655.
Moglen, G. E., and Hartman, G. L. (2001). “Resolution effect on hydrologic modeling parameters and peak discharge,” Journal of Hydrologic Engineering, ASCE, 6(6), 490-497.
Molinas, A., and Yang, C. T., Computer Program User’s Manual for GSTARS, U.S. Department of Interior Bureau of Reclamation Engineering and Research Center, Denver, Colorado, 1986.
Moore, I. D., Mackay, S. M., Wallbrink, P. J., Burch, G. J., and O’Loughlin, E. M. (1986). “Hydrologic characteristics and modeling of a small forested catchment in Southeastern New South Wales: pre-logging condition,” Journal of Hydrology, 83, 307-335.
Moore, I. D., O’Loughlin, E. M., and Burch, G. J. (1988). “A contour based Topographic model for hydrological and ecological applications,” Earth Surface Processes and Landforms, 13, 305–320.
Nash, J. E. (1957). “The form of instantaneous unit hydrograph,” Intl. Assoc. Sci. Hydrology., Pub.45, Vol.3, 114-121.
Noto, L. V., and Loggia, G. L. (2007). “Derivation of a distributed unit hydrograph integrating GIS and remote sensing,” Journal of Hydrologic Engineering, ASCE, 12(6), 639-650.
O'Callaghan, J. F., and Mark, D. M. (1984). “The extraction of drainage networks from digital elevation data,” Computer Vision, Graphics Image Process, 28, 323–344.
Peterson, J. R., and Hamlet J. M. (1998). “Hydrologic calibration of the SWAT model in a watershed containing frangipan soils,” Journal of the American Water Resources Association, 34(3), 531-536.
Peucker, T. K., and Douglas, D. H. (1975). “Detection of surface-specific points by local parallel processing of discrete terrain elevation data,” Computer Graphics and Image Processing, 4, 375-387.
Preissmann, A. (1961). “Propagation des Intumescences dans les canaux et rivieres,” First Congress of the French Association for Computation, AFCAL Grenoble, France, 433-442.
Quinn, P. F., Beven, K. J., Chevallier, P., and Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models.” Hydrological Processes, 5, 59–79.
Quinn, P. F., Beven, K. J. and Lamb, R. (1995). “The ln(a/tanB) index: how to calculate it and how to use it within the TOPMODEL framework,” Hydrological Processes, 9, 161-182.
Rodriguez-Iturbe, I., and Valdes, J. B. (1979). “The geomorphologic structure of hydrologic response,” Water Resources Research, 15(6), 1409- 1420.
Rose, M. A. and Tara, P. D. (1993). Integrated hydrological modeling with Geographic information systems, Information Technologies. Spokane, Wash.
Saghafian, B., Julien, P. Y., and Rajaie, H. (2002). “Runoff hydrograph simulation based on time variable isochrone technique,” Journal of Hydrology, 261, 193-203.
Samuels, P. G., and Skeels, C. P. (1990). “Stability Limits for Preissmann’s Scheme,” Journal of Hydraulic Engineering,116(8), 997-1012.
Satti, S. R., and Jacobs, J. M. (2004). “A GIS-based model to estimate the regionally distributed drought water,” Agricultural Water Management, 66(1), 1-13.
Shadeed, S., Shaheen, H., and Jayyousi, A. (2007). “GIS-based KW-GIUH hydrological model of semiarid catchments: The case of Faria catchment, Palestine,” The Arabian Journal for Science and Engineering, Volume 32, Number 1C, 3-16.
Sherman, L. K. (1932). “Streamflow from rainfall by the unit-graph method,” Eng. New-Record, 108, 501-505.
Shih, S.-S., Lee, H.-Y., and Chen, C.-C. (2008). “Model-based evaluations of spur dikes for fish habitat improvement: A case study of endemic species Varicorhinus barbatulus (Cyprinidae) and Hemimyzon formosanum (Homalopteridae) in Lanyang River, Taiwan,” Ecological Engineering, 34, 127-136.
Shih, S.-S., Yang, S.-C., Lee, H.-Y., Hwang, G.-W., and Hsu, Y.-M. (2011). “Development of a salinity-secondary flow-approach model to predict mangrove spreading,” Ecological Engineering, doi:10.1016/j.ecoleng.2011.02.018.
Steube, M. M., and Johnson, D. M. (1990). “Runoff volume estimation using GIS technique,” Water Resources Bull., 26(4), 611-620.
Toriwaki, J., and Fukumura, T. (1978). “Extraction of structural information from grey pictures,” Computer Graphics and Image Processing, 7, 30-51.
Turcotte, R., Fortin, J.-P., Rousseau, A. N., Massicotte, S., and Villeneuve, J.-P. (2001). “Determination model and a digital river and lake network,” Journal of Hydrology, 240, 225-242.
Vogt, J. V., Colombo, R., and Bertolo, F. (2003). “Deriving drainage net works and catchment boundaries: a new methodology combining digital elevation data and environmental characteristics,” Geomorphology, 53(3-4), 281-298.
Wang, Y.-M., Leu, J.-M., Traore, S., Yang, C.-P., Deng, L.-T. and Weng, T.-H. (2010). “Apprehending the potential effect of sediment deposition due to dredging in Laonong River upstream, Southern Taiwan,” International Journal of the Physical Sciences, 5(14), 2135-2142.
Wolock, D. M., Hornberger G. M., Beven K. J. and Campbell W. G. (1989). “The relationship of catchment topography and soil hydraulic characteristic to lake alkalinity in the northeastern United States,” Water Resources Research, 25, 829–837.
Wolock, D. M., and McCabe, G. J. (1995). “Comparison of single and multiple flow direction algorithms for computing topographic parameter in TOPMODEL,” Water Resources Research, 31(5), 1315-1324.
Wolock, D. M., and McCabe, G. J. (2000). “Differences in topographic characteristics computed from 100- and 1000-m resolution digital elevation model data,” Hydrological Processes, 14, 987-1002.
Wooding, R. A. (1965). “A hydraulic model for the catchment-stream problem, I. Kinematic-wave theory,” Journal of Hydrology, 3(3), 254-267.
Woolhiser, D. A., and Liggett, J. A. (1967). “Unsteady one-dimensional flow over a plane: the rising hydrograph,” Water Resources Research, 3(3), 753-771.
Yagow, G., and Shanholtz, V. (1996). “Procedures of indexing monthly NPS pollution loads from agriculture and urban fringe watershed,” Proceedings of the watershed, 431-434.
Yang, M.-S., and Lee, K. T. (2001). “Determination of probability distributions for Strahler stream lengths based on poisson process and DEM,” Hydrological sciences Journal, 46(5), 813-824.
Yen, B. C. and Lee, K. T. (1997). “Unit hydrograph derivation for ungauged watersheds by stream order laws,” Journal of Hydrologic Engineering, ASCE, 2(1), 1-9.
Zhong, X.-N., Xia, D.-Z., Jing, L.-Y., and Bakir, M. (2008). “Study of hydrological simulation on the basis of digitized basin,” Journal of Hydrologic Engineering, ASCE, 13(5), 317-320.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top