跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/12 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳朝廷
研究生(外文):Chao-Ting Chen
論文名稱:K-stitffness方法驗證堅硬地盤上之聚合物與鋼網加勁材料在MSE擋土牆之適用性
論文名稱(外文):Verification of K-Stiffness Method For Polymer and Steel Grids Reinforcements in MSE Structures on Hard Foundation
指導教授:陳俶季陳俶季引用關係Dennes T. Bergado
指導教授(外文):Shuh-Gi ChernDennes T. Bergado
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:81
中文關鍵詞:加勁材料擋土牆大型直剪
外文關鍵詞:K-stiffnessMSEreinforcementdirect shear testpolyester
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究對加勁結構物以K-stiffness 方法計算驗證加勁材料構築MSE擋土牆結構物於堅硬地盤之適用性。在泰國Phitsanulok省,使用聚合物與金屬地工加勁材料建造MSE擋土牆結構物。加勁材料機制取決於加勁材料與土壤之摩擦力。本研究使用大型直剪試驗對加勁材料與土壤間的相互作用進行分析。並利用K-stiffness方法,FHWA方法與AASHTO2002方法比較鋼網與聚合物(PET)加勁材料之效應。結果驗證鋼網與聚合物(PET)加勁材料以K-stiffness內部設計方法在堅硬地盤上之MSE擋土牆結構物較為適用。因此,在堅硬地盤上可以用K-stiffness方法修改目前保守的設計。
In this study, the K-stiffness method which is used to calculate the reinforcement load of mechanically stabilized earth (MSE) structures on hard foundation was investigated to be applied for reinforced structures. The mechanically stabilized earth wall/embankment was constructed in Phitsanulok Province consisting of reinforced backfill with geosynthetics materials made of polymer geogrids and metallic reinforcements. The mechanism of reinforced earth involves the generation of frictional and bearing resistances at the interfaces between the soil and the reinforcement. This study also presents results of the laboratory large-scale direct shear test investigations on the interactions between soil and the reinforcements. The performances of grids reinforcements consisting of polyester (PET) and steel grids were compared using the K-stiffness method, FHWA method and AASHTO 2002 method. The results show that the K-stiffness method for internal design of polyester (PET) and steel grids of the mechanically stabilized earth (MSE) structures on hard foundation were verified. Consequently, the K-stiffness working stress method can be recommended for revisions of current conservative design method on hard foundation.
Chapter Title Page

Title Page i
Acknowledgement ii
Abstract iii
Table of Contents iv
List of Tables vi
List of Figures vii

1 Introduction
1.1. General 1
1.2. Objectives of the Study 1
1.3. Scope and Limitation of the Study 2


2 Literature Review
2.1. General Characteristics of the Reinforced Earth 3
2.1.1. History 3
2.1.2. The basic principles and concept of reinforced earth 3
2.2. Components of Mechanically Stabilized Earth (MSE) Structure 4
2.2.1. Filling materials 4
2.2.2. Reinforcement material 5
2.2.2.1. Inextensible reinforcement 5
2.2.2.2. Extensible reinforcement 5
2.2.3. Facing 5
2.3. Failure Modes of Mechanically Stabilized Earth (MSE) 6
2.3.1. External failure 6
2.3.2. Internal failure 6
2.4. Methods Used to Calculate Reinforcement Loads
in MSE structures 6
2.4.1. Current Design Method 7 2.4.1.1. Tieback Wedge or Simplified Method 7
2.4.1.2. FHWA Structure Stiffness Method 7

2.4.2. K-Stiffness method 9
2.4.3. Revised K-Stiffness method 13
2.4.4. Global equilibrium of K-stiffness method 14
2.5. Working Stress Design (WSD) 14
2.6. Previous Research of Interaction between Backfill
and Reinforcement 15
2.6.1. AIT researches 15
2.6.2. Other researches 18


3 Methodology
3.1. Introduction 23
3.2. Engineering Property of Materials 23
3.2.1. Backfill material testing 23
3.2.1.1. Sieve Analysis 24
3.2.1.2. Modified Proctor compaction test 24
3.2.1.3. Direct shear test 24
3.2.2. Tension test of reinforcement 25
3.3. Large-Scale Direct Shear Test 25
3.3.1. Large-scale direct shear apparatus 25
3.3.2. Large-scale direct shear test procedure 26
3.4. Pullout test 26
3.4.1. Pullout test apparatus 26
3.4.2. Pullout test procedure 27
3.5. Analysis by K-Stiffness Method and Procedure 27
3.6. Fully Instrumented Test Embankment
in Phitsanulok Province, Thailand 28
3.6.1. Instrumentation Measurement in the Field 29
3.6.2. Vertical settlements 29
3.6.3. Strains in reinforcements from measurements 29
4 Results and Discussions
4.1. Interface Shear Strength from Direct Shear Test 30
4.2. Validation the Data Obtained from Previous Study 30
4.2.1. Current design method for estimation of
reinforcement loads 31
4.2.1.1. Tieback Wedge or Simplified Method
(AASHTO, 2002) 31
4.2.1.2. FHWA Structure Stiffness Method
(Christopher et al., 1990) 31
4.2.1.3. Original K-Stiffness Method 32
4.2.1.4. Modified K-Stiffness Method 32
4.3. Comparison Polyester (PET) and Steel Grids Using
K-Stiffness Method 32
4.4. Comparison of Procedures versus Measured Data 33


5 Conclusions and Recommendations
5.1. Conclusions 34
5.2. Recommendations for Future Researches 34

Abiera, H. O., 1991. Mechanically stabilized earth using TENSAR, bamboo and steel grid reinforcements with lateritic soil as backfill, M. Eng. Thesis GT-90-21, Asian Institute of Technology, Bangkok, Thailand.
Adib, M., Mitchell, J. K. and Christopher, B., 1990. Finite element modeling of reinforced soil walls and embankments, Design and Performance of Earth Retaining Structure, ASCE Geotech. Special Publication, No. 25, pp. 409-423.
Alagiyawanna, A.M.N, Sugimoto, M., Sato, S., and Toyota, H., 2001. Influence of longitudinal and transverse members on geogrid pullout behavior during deformation. Geotextiles and Geomembranes, Vol. 19, pp. 483-507.
Alfaro, M. C., 1996. Reinforced soil wall-embankment system on soft foundation using inextensible and extensible grid reinforcements. Phd. Dissertation, Saga University, Japan.
Alfaro, M. C. and Pathak, Y. P., 2005. Dilatant stresses at the interface of granular fills and geogrid strip reinforcements. Geosynthetics International, Vol. 12, No. 5, pp. 239-252.
Alfaro, M. C., Hayashi, S., Miura, N. and Bergado D. T., 1997. Deformation of reinforced wall/embankment system on soft clay foundation. Soils and Foundations, Vol. 37, No. 4, pp. 33-46.
Alfaro, M. C., Miura, N., and Bergado, D. T., 1995. Soil-geogrid reinforcement interaction by pullout and direct shear tests. Geotechnical Testing Journal, Vol. 18, No. 2, pp. 157-167.
Allen, T.M., Bathurst, R.J. (2002a). Soil reinforcement loads in geosynthetic walls at working stress conditions. Geosynthetic International, 9(5-6): 525-526

Allen, T.M., Bathurst, R.J. (2002b). Observed long-term performance of geosynthetic walls, and implications for design. Geosynthetic International, 9(5-6): 567-606

Allen, T.M., Bathurst, R.J., Robert D. Holtz, D. Walters, and Wei F.Lee (2003). A new working stress method for prediction of reinforcement loads in geosynthetic walls”. Canadian Geotech. Journal, Vol. 40, pp. 976-994.

Allen, T.M., Bathurst, R.J., Robert D. Holtz, D. Walters, and Wei F.Lee (2004). New Method for Prediction of Loads in Steel Reinforced Soil Walls. Journal of Geotechnical and Goeenvironmental Engineering ASCE/November 2004, pp 1109-1120.
Al Hattamleh, O., and Muhunthan, B., 2006. Numerical procedures for deformation calculations in the reinforced soil walls. Geotextiles and Geomembranes, Vol. 24, No. 1, pp. 52-57.
American Association of State Highway and Transportation Official (AASHTO), 2002. Standard Specification for Highway Bridges, 17th Edition. Washington, DC, USA.
Anderson, L. R. and Neilsen, M. R., 1984. Pullout resistance of wire mats embedded in soil. Report for the Hilfinker Co., from the Civil and Enviromental Engineering Department, Utah State University, Logan Utah.
Anderson, L. R., Sharp, K. D. and Harding, O. T., 1987. Performance of a 50 feet high welded wire wall, soil improvement – a ten year update, Geotechnical Special Publication ASCE, No. 12, pp. 208-308.
Anujorn, P., 1999. Evaluation of full scale embankment with hexagonal wire mesh reinforcement and gabion facing with additional surcharge, M. Eng. Thesis No. GE-98-15, Asian Institute of Technology, Bangkok, Thailand.

Asanprakit, A., 2000. Analytical model on the distributions of frictional and bearing resistance as well as deformations of hexagonal wire mesh reinforcement with weathered Bangkok clay backfill, M. Eng. Thesis No. GE-99-13, Asian Institute of Technology, Bangkok, Thailand.
Auvinet, G. and Gonzalez, J. L., 2000. Three-dimensional reliability analysis of earth slopes, Computers and Geotechnics, Vol. 26, pp. 247-261.
Bathurst, R. J., 2007. Working stress design for geosynthetics reinforced soil walls, Proceeding of New Horizon in Earth Reinforcement (IS-KYUSHU 2007), Taylor & Francis Group, London, pp. 105 – 112.
Barthurst, R. J., Allen, T. M. and Walters, D.L. (2005), Reinforcement loads in geosysthetic walls for a new working stress design method. Geotextiles and Geomembranes, Vol. 23, pp. 287-322.
Bergado, D. T. and Teerawattanasuk, C., 2008. 2D and 3D numerical simuations of reinforced embankments on soft ground. Geotextiles and Geomembranes, Vol. 20, No. 6, pp. 343-365.
Bergado, D. T., Youwai, S., Teerawattanasuk, C. and Visudmedanukul, P., 2003. The interaction mechanism and behavior of hexagonal wire mesh reinforced embankment with silty sand backfill on soft clay. Computers and Geotechnics, Vol. 30, pp. 517-534.
Bergado, D. T., Long, P. V. and Srivinasa Murthy, B. R., 2002. A case study of geotextile-reinforced embankment of soft ground. Geotextiles and Geomembranes, Vol. 20, No. 6, pp. 343-365.
Bergado, D. T., Teerawattanasuk, C., Wongsanon, T. and Voottipreux, P., 2001. Interaction between hexagonal wire mesh reinforcement and silty sand backfill. Geotechnical Testing Journal, ASTM, Vol. 24, No. 1, pp. 23-38.
Bergado D. T., Teerawattanasuk C., Youwai S. and Voottipruex P., 2000a. FE modeling of hexagonal wire reinforced embankment on soft clay. Canadian Geotechnical Journal, Vol. 37, pp. 1209-1226.
Bergado, D. T., Teerawattanasuk, C. Long, P. V., 2000b. Localized mobilization of reinforcement force and its direction at the vicinity of failure surface. Geotextiles and Geomembranes, Vol. 18, pp. 311-331.
Bergado, D. T., Chai, J. C. and Miura, N., 1995. FE Analysis of grid reinforced embankment system on soft Bangkok clay. Computers and Geotechnics, Vol. 17, pp. 447-471.
Bergado, D. T. and Chai J., 1994. Pull-out force/displacement relationship of extensible grid reinforcements, Geotextiles and Geomembranes, Vol. 13, pp. 295-316.
Bergado, D. T., Long, P. V., Loke, K. H. and Werner, G., 1994. Performance of reinforced embankment on soft bangkok clay with high-strength geotextile reinforcement, Geotextiles and Geomembranes, Vol. 13, pp. 403-420.
Bergado, D. T., Shivashankar, R., Alfaro, M. C., Chai, J. C. and Balasubramaniam, A. S., 1993. Interaction behavior of steel grid reinforcements in a clayey sand. Geotechnique, Vol.43, No. 4, pp. 589-603.
Bergado, D. T., Sampaco, C. L., Shivashankar, R., Alfaro, M. C., Anderson, L. R. and Balasubramaniam, A. S., 1991b. Performance of welded wire wall with poor quality backfills on soft clay, ASCE Geotechnical Engineering Congress, Boulder, Colorado, U.S.A. pp. 909-922.
Bergado, D. T., Shivashankar, R., Sampaco, C. L., Alfaro, M. C. and Anderson, L. R., 1991. Behavior of welded-wire wall with poor quality cohesive-frictional backfills on soft Bangkok clay. Canadian Geotech. Journal, Vol. 28, pp. 860-880.
Bonaparte, R. and Christopher, B. R., 1987. Design and construction of reinforced embankments over weak foundations. Transportation Research Record 1153, Transportation Research Board, National Research Council, Washington, D.C., pp. 26-39
Boulton, M., 1989. Basic feature of soil structure interface behavior, Computers and Geotechnics, Vol. 7, pp. 115-131.
Briaud, J. and Lim, Y., 1999. Tieback walls in sand: numerical simulation and design implications, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 2, pp. 101-111.
Britto, A. M. and Gunn, M. J., 1987. Critical State Soil Mechanics via Finite Elements. Ellis Horwood, Chichester, U.K.
Chai, J. C., 1992. Interaction behavior between grid reinforcement and cohesive frictional soils and performance of reinforced wall/embankment on soft ground. D. Eng Dissertation No. GT-91-1, Asian Institute of Technology, Bangkok, Thailand.
Chai, J. C. and Bergado, D. T., 1993a. Performance of reinforced embankment on Muar clay deposit. Soils and Foundations, Vol. 33, No. 4, pp. 1-17.
Chai, J. C. and Bergado, D. T., 1993b. Some techniques for FE analysis of embankment on soft ground. Canadian Geotechnical Journal, Vol. 30, pp. 710-719.
Christopher, B. R., Gill, S. A., Giroud, J. P., Juran, I., Schlosser, F., Mitchell, J. K. and Dunnicliff, J., (1989). Design and construction guidelines. Reinforced Soil Structures, Vol. 1, STS Consultants, Ltd., Northbrook, Illinois.

Christopher, B. R., Holtz, R. D. and Allen, T. M., 1990. Instrumentation for a 12.6 m high geotextile-reinforced wall, Proc. of the Intl. Reinforced Soil Conference, Glasgow, Thomas Telford, London, pp. 169-173.
Cisneros, C. B., 1989. Pullout resistance of steel grids with weathered clay as backfill material. M. Eng. Thesis No. GT-88-7, Asian Institute of Technology, Bangkok, Thailand.
Esterhuizen, J. J. B., Filz, G. M., and Duncan, J. M., 2001. Constitutive behavior of geosynthetic interfaces. ASCE Journal of Geotechnical and Geoenvironmental Engineeering, Vol. 127, No. 10, pp. 834-840.
Farrag, K., Acar, Y. and Juran, I., 1993. Pull-out resistance of geogrid reinforcements. Geotextiles and Geomembranes, Vol. 12, pp. 133-159.
Federal Highway Administration, Department of Transportation (2001), Mechanically stabilized earth walls and reinforced soil slopes design & construction guidelines, Publication No.FHWA-NHI-00-043, NHI Course No.132042, USA.
Fowler, J., 1982. Theoretical design donsideration for fabric reinforced embankments, Pro. Second Int. Conf. on Geotextiles, Las Vegas, November, 1982, Vol.3, pp.665-670.
Gens, A., Carol, I. and Alonso, E. E., 1990. An interface element formulation for the analysis of soil-structure interaction, Computer and Geotechnics, Vol. 9, pp. 3-20.
Gurung, N, Iwao, Y, Madhav, M. R., 1999. Pullout test model for extensible reinforcement. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, pp. 1337-1348.
Hatami, H. and Bathurst, R. J., 2006. Numerical model for reinforced soil segmental walls under surcharge loading. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 6, pp. 673-684.
Hausmann, M. R., 1976. Strength of reinforced soil, Proc. 8th Australian Road Res. Conf., Vol. 8, Section 13, pp. 1-8.
Hinchberger, S. D. and Rowe, R. K., 2003. Geosynthetic reinforced embankments on soft clay foundations: predicting reinforcement strains at failure. Geotextiles and Geomembranes, Vol. 21, No. 3, pp. 151-175.
Hird, C. C. and Jewell, R. A., 1990. Theory of reinforced embankment, Reinforced Embankments- Theory and Practice, Shercliff, D.A. Ed., Thomas Telford Ltd., London, UK, pp. 117-142.
Hird, C. C, and Kwok, C. M., 1989. FE studies of interface behavior in reinforced embankments on soft ground, Computers and Geotechnics, Vol. 8, pp. 111-131.
Holtz, R. D., Christopher, B. R. and Berg, R. R., 1995. Geotextile Design & Construction Guidelines, Publication No. FHWA HI-95-038.
Hsieh, C. W., Huang, A. B., Chang, Y. C. and Chou, N. N. S., 1998. The construction of a test geogrid reinforced embankment, Proceeding of 13th Southeast Asian Geotechnical Conference, Taipei, Taiwan, ROC, pp. 315-320.
Hung, L. K., 1990. Modeling of laboratory and field pullout test of steel geogrid reinforcements. M. Eng. Thesis No. GT-89-5, Asian Institute of Technology, Bangkok, Thailand.
Ingold, T. S., 1982a. Reinforced Earth, Thomas Telford, London.
Ingold, T. S., 1982b. An analytical study of geotextile reinforced embankment, Second International Conference of Geotextile, Las Vegas, U.S.A., Vol. 3, pp. 683-688.
Jewell, R. A., 1986. The mechanics of reinforced embankments on soft soils, Proceeding of the Prediction Symposium on a Reinforced Embankment on Soft Ground, 17-18th Sept., 1986, King’s College, Strand, London, pp. 159-163.
Jewell, R. A., Milligan, G. W. E., Sarsby, R. W. and Dubois, D., 1984. Interaction between soil and geogrids, Proc. of the Symp. on Polymer Grid Reinforcement in Civil Eng., Thomas Telford Limited, London, U.K., pp. 19-29.

Juran, I. and Schlosser, F., 1978. Theoretical analysis of failure in reinforced earth structures, Proceeding of Symposium on Earth Reinforcement, ASCE, Pitsburgh, pp. 528-555.
Juran, I., Knochennus, G., Acar, Y. B. and Arman, A., 1988. Pullout response of geotextiles and geogrids (synthesis of available experimental data), Geosynthetics for Soil Improvement, edited by Holtz, R.D., Geotechnical Special Publication No. 18, ASCE, pp. 92-111.
Kabiling, M. B., 1997. Pullout capacity of different hexagonal link wire sizes and configurations on sandy and volcanic ash (lahar) backfills, M. Eng. Thesis No. GE 96-4, Asian Institute of Technology, Bangkok, Thailand.
Kaliakin, V. N. and Dechasakulsom, M. 2002. Development of a general time-dependent model for geogrids. Geosynthetics International, Vol. 9, No. 4, pp. 319-344.
Kaniraj, S. R., 1994. Rotational stability of unreinforced and reinforced embankments on soft soils. Geotextiles and Geomembranes, Vol. 13, pp. 707-726.
Karpurapu, R. and Bathurst, R. J., 1995. Behavior of geosynthetic reinforced soil retaining walls using the finite element menthod. Computers and Geotechnics, Vol. 17, pp. 279-299.
Khwanpruk, S., 1998. Performance of full scale embankment with hexagonal wire mesh reinforcement and gabion facing, M. Eng. Thesis No. GE-97-11, Asian Institute of Technology, Bangkok, Thailand.
Kim, H. S. and Bilgin, O., 2007. Studying the Effect of Concrete Key Size on Mechanically
Stabilized Earth Wall Deformations using Finite Element Method, Geotechnical Special Publications GSP 157, Computer Applications in Geotechnical Engineering, Proceedings Of Sessions Of Geo-Denver 2007,New Peaks in Geotechnics, February 18-21, 2007, Denver, Colorado, ASCE-2007.
Koerner, R. M., 1998. Design with geosynthetics, Prentice-Hall Inc, Newjercy, USA.
Kondner, R. L and Zelasko, J. S., 1963. A hyperbolic stress-strain formulation of sand, Proc. of Second Pan American Conf. on Soil Mech. and Foundation Eng’g.
Kongkitkul, W., 2001. Numerical and analytical modeling of interaction between hexagonal wire mesh reinforcement and silty sand backfill during in-soil pullout tests, M. Eng. Thesis No. GE 00-18, Asian Institute of Technology, Bangkok, Thailand.
Kongkitkul, W. and Tatsuoka F., 2004. Inextensible versus extensible reinforcements: performance in plane strain compression on reinforced Toyoura sand. Proceedings 15th Southeast Asian Geotechnical Society Conference, Bangkok, Thailand, pp. 503 – 508.
Kwon, J., Tutumluer, E. and Kim, M., 2005. Development of a mechanistic model for geosynthetic-reinforced flexible pavements. Geosynthetics International, Vol. 12, No. 6, pp. 310-320
Lai, Y. P., Bergado, D. T., Lorenzo, G. A. and Duangchan, T., 2006. Full-scale reinforced embankment on deep jet mixing improved ground. Ground Improvement, Vol. 10, No. 4, pp. 153-164.
Ling, H. I. and Leshchinsky, D., 2003. Finite element parametric study of the behavior of segmental block reinforced-soil retaining walls. Geosynthetics International, Vol. 10, No. 3, pp. 77-94.
Leshchinsky, D., 2009. On global Equilibrium in Design of Geosynthetic Reinforced Walls. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 3,pp. 309-315.
Long, P. V., 1996. Behavior of geotextile-reinforced embankment on soft ground. Doctoral Dissertation No. GT 96-1, Asian Institute of Technology, Bangkok, Thailand.
Low, B. K. and Duncan, J. M., 1985. Analysis of the behavior of reinforced embankments on weak foundations, Report VPI/CE-GT-85-11, Virginia Polytechnic Institute, Blacksburg.
Low, B. K., Wong, K. S., Lim, C. and Broms, B. B., 1990. Slip circle analysis of reinforced embankments on soft ground, Geotextiles and Geomembranes, Vol. 9, pp. 165-181.


Madhav, M. R. and Umashankar, B., 2003. Analysis of inextensible sheet reinforcement subject to downward displacement/force: non-linear subgrade response. Geosynthetics International, Vol. 10, No. 3, pp. 95-102.
Mahmood, T. (2009), Failure analysis of a mechanically stabilized earth (MSE) wall using finite element program PLAXIS, M. Sci., The University of Texas at Arlington, Thailand.
Milligan and Busbridge, J. R., 1983. Guideline for the use of Tensar geogrids in reinforcement of fill over weak foundation, Golder Associate Report to the Tensar Corporation, Mississaaupa, Ontario.
Mir, E. N., 1996. Pullout and direct shear test of hexagonal wire mesh reinforcements in various fill materials including lahar from Mt. pinatubo, philipines. M. Eng. Thesis No. GE 95-18, Asian Institute of Technology, Bangkok, Thailand.
Mitchell, J. K., 1981. Soil improvement: state-of-the art. Proc., Tenth Intl. Conf. on Soil Mech. and Found. Eng., Stockhom, Sweden.
Mitchell, J. K. and Villet, W. C. B., 1987. Reinforcement of Earth Slopes and Embankments. National Cooperative Highway Research Program Report No. 290, Washington, D.C., Transportation Research Board, 323 P.
Miyata, Y. and Bathurst, R.J. (2007a). Evaluation of K-stiffness method for vertical geosynthetic reinforced granular soil walls in Japan. Soils and Foundations, Vol. 47, No. 2, pp. 319-335.
Miyata, Y. and Bathurst, R.J. (2007b). Development of the K-stiffness method for geosynthetic reinforced soil walls constructed with c- soils. Canadian Geotechnical, Journal. 44: 1391-1416
Modmoltin, C., 1998. Behavior of hexagonal wire mesh reinforcement in full scale embankment load during pullout test. M. Eng. Thesis No. GE-97-6, Asian Institute of Technology, Bangkok, Thailand.
Moraci, N. and Recalcati, P., 2006. Factors affecting the pullout behaviour of extruded geogrids embedded in a compacted granular soil. Geotextiles and Geomembranes, Vol. 24, No. 4, pp. 220-242.
NCMA, 1997. Design Manual for Segmental Retaining Walls, 2nd Edition. National Concrete Masonry Association, Herdon, Verginia, USA.
Palmeira, E.M. and Milligan, G. W. E., 1989. Scale and other factors affecting the results of pullout tests of grids buried in sand. Geotechnique, Vol. 39, No. 3, pp. 511-524.
Paul D. P., P.E., CPM, State geotechnical engineer Tallahassee, Florida (2000), Mechanically stabilized earth wall inspector’s handbook, State of Florida, Department of Transportation, Florida, USA.
Peterson, L. M. and Anderson, L. R., 1980. Pullout Resistance of Welded Wire Mats Embedded in Soil, Research Report Submitted to Hilfinker Co., from the Civil and Environmental Engineering Department, Utah State University, USA.
Poon, L. Y., 2009. Performance and behavior of full scale reinforced soil embankment/wall on DMM improved foundation, Ph. D. Thesis No.GE-08-02, AIT, Bangkok, Thailand.
Poulos, H. G. and Davis, E. H., 1974. Elastic Solution for Soil and Rock Mechanics, John Wiley and Sons Inc., New York.

Prempramote, S., Interaction between geogrid reinforcement and tire chip-sand mixture, M. Eng. Thesis No. GE-04-12, Asian Institute of Technology, Bangkok, Thailand
Rowe, R. K., 1992. Reinforced embankments on soft cohesive deposits. Proc. of the Int’l Symposium on Applications of Geosynthetics Technology, Jakarta, pp. 1-19.
Rowe, R. K., 1984. Reinforced embankment, analysis and design, Journal of Geotechnical Engineering Division, ASCE, Vol. 110, No. 2, pp. 231-246.
Rowe, R. K. and Ho, S. K., 1998. Horizontal deformation in reinforced soil walls. Canadian Geotechnical Journal, Vol. 35, pp. 312-327.
Rowe, R. K. and Ho, S. K., 1997. Continuous panel reinforced soil walls on rigid foundations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 10, pp. 912-920.
Rowe, R. K. and Soderman, K. L., 1987. Reinforcement of embankment on soils whose strength increases with depth. Proceeding of Geosynthetics’87, New Orleans, pp. 266-277.
Schlosser, F. and De Buhan, P., 1990. Theory and design related to the performance of reinforced soil. Proceedings of International Reinforced Soil Conference, Glasgow, pp. 1-14.
Schaefer, U. R. and Duncan, J. M., 1988. Finite element analysis of the St. Alban test embankments. ASCE Geotechnical Special Publication No. 18, pp. 158-177.
Shivashankar, R., 1991. Behavior of Mechanically Stabilized Earth (MSE) Embankment with Poor Quality Backfills on Soft Clay Deposits, Including a Study of the Pullout Resistances. D. Eng. Dissertation, Asian Institute of Technology, Bangkok, Thailand
Smith I. M. and Griffith D. V., 1988. Programming the Finite Element Method, Second Edition, John Willy and Sons, Chichester, U. K.
Srikongsri, A., 1999. Analytical model for interaction between hexagonal wire mesh and silty sand backfill. M. Eng. Thesis No. GE-98-14, Asian Institute of Technology, Bangkok Thailand.
Sugimoto, M. and Alagiyawanna, A. M. N., 2003. Pullout behavior of geogrid by test and numerical analysis. Journal of Geotechnical and Geoenvironmental Engineering ASCE, Vol. 129, No. 4, pp. 461-371.
Supawiwat, N., 2002. Behavior of shredded rubber tires with and without sand, its interaction with hexagonal wire reinforcement and their numerical simulation. M. Eng. Thesis No. 01-14, Asian Institute of Technology, Bangkok, Thailand.
Tanchaisawat, T. (2008), Interactions and performances of geogrid reinforced tire chips-sand lightweight embankment on soft ground, Ph. D. Thesis No.GE-07-01, AIT, Bangkok, Thailand.
Tatlisoz, N., Edil T. B. and Benson, C. H., 1998. Interaction between reinforcing geosynthetics and soil-tire chip mixtures. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 11, pp. 1109-1119.
Teerawattanasuk, C., 1997. Interaction and deformation behavior of hexagonal wire mesh reinforcement at vicinity of shear surface on sand and volcanic ash (lahar) backfills, M. Eng. Thesis GE-96-14, Asian Institute of Technology, Bangkok, Thailand.
Terzaghi, K. and Peck, R. B., 1967. Soil Mechanics in Engineering Practice, 2nd edition, New York, Wiley, p 729.
Terzaghi, K, Peck, R. B. and Mersri, G., 1996. Soil Mechanics in Engineering Practice, Wiley, New York, USA.
Tin, N. (2009), Factors affecting the kinked steel grid reinforcement and modification of K-stiffness Method in MSE structures on soft ground, M. Eng. Thesis No.GE-08-03, AIT, Bangkok, Thailand.
Vermeer, P. A. and Brinkgreve, R. B. J. (Editor), 1995. Finite Element Code for Soil and Rock Analysis, A. A. Balkema, Rotterdam, Netherland.
Vidal, H., 1969. The principle of reinforced earth. Highway Research Record No. 282, Highway Research Board, National Research Council, Washington D.C., pp. 1-16.
Voottipruex, P., 2000. Interaction of hexagonal wire reinforcement with silty sand backfill soil and behavior of full scale embankment reinforced with hexagonal wire. D. Eng. Dissertation No. GE-99-1, Asian Institute of Technology, Bangkok, Thailand.
Wang, Z. and Richwein, W. 2002. A study of soil-reinforcement interface friction, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 128, No. 1, pp. 92-94.
Wongsawanon, T., 1998. Interaction between hexagonal wire mesh reinforcement and silty sand backfill. M. Eng. Thesis No. GE 97-14, Asian Institute of Technology, Bangkok, Thailand.
Yang, 1972. Strength and deformation characteristics of reinforced sand, Ph.D. Thesis, UCLA.

Yoo, C. and Jung, H. Y., 2006. Case history of geosynthetic reinforced segmental retaining wall failure. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 12, pp. 1538-1548.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top