跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/03 00:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈昱勝
論文名稱:提升都卜勒估測與導航精度之設計
論文名稱(外文):A Strategy for Improvement of Doppler Estimates and Navigation Accuracy
指導教授:卓大靖
指導教授(外文):Dah-Jing Jwo
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:101
中文關鍵詞:交互多模型卡爾曼濾波器都卜勒GPS/INS超緊密整合
外文關鍵詞:Interacting Multiple ModelKalman filterDopplerGPS / INSUltra-tight integration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本論文藉由卡爾曼演算法結合超緊密 (ultra-tight integration)導航之設計。超緊密整合也稱為深度整合(Deep integration),對接收機在接收前端I、Q訊號即時追蹤,使GPS與INS有更優異的互補性質,再由速度輔助估計對超緊密架構載體的都卜勒速率漂移,從而提升迴路的追蹤性能。

都卜勒補償整合超緊密架構補償更精確的都卜勒造成的速率偏移概念,增加頻率與相位的鎖定應用到濾波器內部架構上提升抗干擾與多路徑之能力與高動態時性能,加強微弱訊號追蹤能力,提高市區或室內定位精度。

利用多模型控制演算法的特性,可充分應用於具有不確定性之系統,在高動態時更同時具有判別最佳定位能力;藉由多模型控制演算法之特性以輔助超緊密EKF、UKF卡爾曼濾波器,使定位性能更機動提升整個系統的準確度。

The paper by Kalman algorithm combines with design of ultra-tight integration navigation. Ultra-tight integration, also known as deep integration, has superb complementary nature between GPS and INS when front-end receiver receives I.Q. signals for real-time tracking. And velocity complementary is used to estimate the drift rate of auxiliary carrier Doppler ultra-tight structure, so as to enhance the performance of loop tracking.

The structure of Doppler ultra-tight compensated integration provides more accurate concept of drifting rate which is resulted from Doppler. Increasing frequency and phase lock loop are applied to the filter to enhance the internal structure of multi-path interference and high dynamic capabilities and performance when to strengthen the weak signal tracking capability, improve the urban or indoor positioning accuracy.

The feature of Interacting Multiple-model can be fully applied to the system which contains uncertainties, even to distinguish the position when in high dynamics; by the characteristics of Interacting Multiple-model algorithm to support ultra-tight EKF UKF, so that positioning is more flexibility and to enhance the accuracy of system.


摘要 I
ABSTRACT II
目錄 IIII
圖目錄 VI
表目錄 X
第一章緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 3
第二章 全球衛星定位系統及慣性導航系統 5
2-1 全球定位系統GPS 5
2-1.1全球定位系統簡介 5
2-1.2全球定位系統定位原理 7
2-1.3 GPS的載波(Carrier Waves) 7
2-1.4 GPS的測距碼(Ranging Code) 9
2-2 訊號的擷取與追蹤 10
2-2.1 衛星訊號擷取 11
2-2.2衛星訊號追蹤 11
2-3 慣性導航系統 13
2-3.1 慣性導航的基本原理 14
2-3.2常用座標系統 15
2-3.3 座標轉換 18
2-3.4 二維慣性導航方程式 22
2-3.5 三維慣性導航方程式 25
第三章GPS/INS整合導航系統 32
3-1 鬆弛耦合式整合導航系統 32
3-2 緊密耦合式整合導航系統 35
3-3 超緊密耦合式整合導航系統 37
3-4 超緊密都卜勒速度輔助 43
第四章 卡爾曼濾波器 46
4-1 卡爾曼濾波器簡介 46
4-2 離散型卡爾曼濾波器(DISCRETE KALMAN FILTER) 48
4-3 擴展型卡爾曼濾波器(EXTENDED KF,EKF) 51
4-4 無跡卡爾曼濾波器(UNSCENTED KALMAN FILTER,UKF) 57
4-4.1 Unscented轉換(Unscented Transformations,UT ) 58
第五章 交互多模型演算法 63
5-1 交互多模型演算法 63
5-2 交互多模型無跡卡爾曼濾波器 67
第六章 結果與分析 70
6-1 載體運動軌跡 70
6-2 INS運動軌跡 71
6-3 參數設定 76
6-4 EKF、UKF都卜勒速度輔助 78
6-5 多模型EKF都卜勒速度輔助 84
6-6 多模型UKF都卜勒速度輔助 88
第七章 結論及未來展望 98
7-1 結論 98
7-2 未來展望 99
參考文獻 100

[1] 莊智清、黃國興,“電子導航”,全華科技圖書股份有限公司,2001.
[2] Farrel, J. and Barth, M. “The Global Positioning System and Inertial Navigation”, McGraw-Hill Companies, Inc. 1999.
[3] GARMIN , http://www.garmin.com.tw/support/aboutGPS/.
[4] 賴盈霖、張英彬,“全球導航衛星系統接收機”,儒林圖書公司,2008.
[5] Borre, K. and Akos, D. and Bertelsen, M. N. and Rinder, P. S. and Jensen, H. “A Software-Defined GPS and Galileo Receiver”, Birkhauser, Boston, 2007.
[6] Salychev, O. S. “Applied Inertial Navigation: Problems and Solution”, BMSTU Press, 2004.
[7] Titterton, D. and Weston, J. “Strapdown Inertial Navigation Technology”, Peter Pergrinus Ltd. On behalf of the Institution of Electrical Engineers, London, 1997.
[8] Simon, D. “Optimal State Estimation, Kalman, H∞, and nonlinear approaches”, John Wiley & Sons, 2006.
[9] Babu, R. and Wang, J. “Ultra-tight GPS/INS/PL integration: a system concept and performance analysis”, GPS Solution, 2009.
[10] Yuan, G. and Zhang, T. “Unscented Kalman Filtering for Ultra-tightly Coupled GPS/INS Integrayion”, Proceeding of IEEE,2009.
[11] Chung, K. Y. and Cho, Y. S. and D. S. Shim, “Performance Investigation of GPS/INS Ultra-tightly integration for Navigation of Unmanned Expedition Vehicles”, Journal of Control, Automation and Systems Engineering ,Vol. 12. No. 8, August 2006.
[12] Chen, Y. and Yu, X. W. and Ye, C. Y. and Zhang, M. “Analysis of Single-Point GPS Velocity Determination with Doppler”, Gnss World, January 2008.
[13] 曾庭鴻,“利用GPS鑑別加速儀的速度誤差模式”,國立成功大學航空太空研究所碩士論文,7. 2002.
[14] Ho, C. S. and Chen, J. Z. and Wen, C. T. “Precise Velocity Determination with GPS Doppler Measurements”, Proceedings of ION National Technical Meeting, pp. 223-227, January 22-24. 2001.
[15] Kim, K. H. and Song, J. H. and Jee, G. “Vector Tracking Loop based GPS/INS Deep Integration using Combined Kalman Filter”, GPS/GNSS , pp. 732~735,November 11~14,2008.
[16] 付夢印、鄧志紅、張繼偉,“ Kalman 濾波理論及其在導航系統中的應用”,科學出版社,2003.
[17] Brown, R. G. and Hwang, P. Y. C. “Introduction to Random Signals and Applied Kalman Filtering”, John Wiley & Sons , New York, 1997.
[18] Ristic, B. and Arulampalam, S. N. and Gordon, J. “Beyond the Kalman Filter”, Artech House, Boston London, 2004.
[19] Jwo, D. J. and Cho, T. S. “Implemention practice and accuracy assessment for the linearized and extended Kalman filters”, class notes.2010.
[20] Julier, S. J. and Uhlmann,J. K. and Durrant, W. H. “A New Approach for Filtering Nonlinear Systems”, Proceeding of the 1995 American Control Conference, pages 1628–1632, Seattle WA, USA, 1995.
[21] 袁建平、方群,“非線性估計理論的最新發展”,宇航學報,第26卷第3期,第380-384頁,7. 2005.
[22] Wan, E. A. and Merve, R. V. “The Unscented Kalman Filter, Kalman Filtering and Neural Networks”, John Wiley & Sons, 2001.
[23] Johnston, L. A. and Krishnamurthy, V. “An Improvement to the Interacting Multiple Model (IMM) Algorithm,” IEEE Transactions on Signal Processing, vol. 49, no. 12, pp. 2909-2923 (2001).
[24] Tseng , C. H. “Fuzzy Adaptive Interacting Multiple Model using Nonlinear Filter for Enhancing Integrated Navigation System Performance” College of Electrical Engineering and Computer Science National Taiwan Ocean University, July 2009
[25] Kim, Y. S. and Hong, K. S. “An IMM algorithm for tracking maneuvering vehicles in an adaptive cruise control environment,” International Journal of Control Automation and Systems, vol. 2, no. 3, pp. 310-318 (2004).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top