跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/22 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃星翰
研究生(外文):Hsing-Han Huang
論文名稱:活體黃鰭鮪幼魚標物反射強度之研究
論文名稱(外文):A study on the target strength of living juvenile yellowfin tuna (Thunnus albacores)
指導教授:呂學榮
指導教授(外文):Hsueh-Jung Lu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:95
中文關鍵詞:標物反射強度尾叉長黃鰭鮪人工集魚器泳鰾
外文關鍵詞:Target strengthFork lengthYellowfin tunaFADSwim bladder
相關次數:
  • 被引用被引用:5
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
為能藉由黃鰭鮪幼魚標物反射強度 (TS) 之特性,評估聚集於人工集魚器 (Fish aggregating devices, FAD) 之黃鰭鮪幼魚體長及減少幼魚之混獲,本研究在水槽中設置同步之雙攝影機系統,搭配頻率200 kHz之魚探機,擷取黃鰭鮪自然游動之TS、俯仰角及尾叉長 (FL),依據黃鰭鮪之俯仰角及TS,探討俯仰角對於TS之影響。另外,量測黃鰭鮪之泳鰾體積,建立其與FL之成長關係,且透過黃鰭鮪魚體X光照片,了解泳鰾於黃鰭鮪魚體內之位置。最後,在FAD現場計測水下魚群之TS,並使用曳繩釣進行生物採樣,以水槽實驗所獲之TS特性篩選單體回訊,分析FAD聚集魚種之資訊。本研究主要之成果摘述如下:

(一) 尾叉長25 ~ 69 cm之黃鰭鮪幼魚,其依200 kHz魚探機所測得之TS,與尾叉長對數具有明顯之線性關係,25 cm與69 cm之黃鰭鮪,正背部TS約相差達13 dB。

(二) 黃鰭鮪之TS明顯受到俯仰角變化影響,當俯仰角為負時 (向下洄游),易產生較大之TS,由俯仰角分組比較實測TS得知,TS與Log (FL) 迴歸線之截距在 [−15° to −20°] 為最大,故最大之TS出現在此俯仰角範圍。

(三) 泳鰾於魚體內位置並非與脊椎平行,而有一約25°之夾角,造成黃鰭鮪本研究實測TS最大值表現於俯仰角-15°~ -20°間,未成熟黃鰭鮪之泳鰾開始發育後,TS明顯增大,且俯仰角影響更趨明顯。

(四) 本研究嘗試從FAD現場之單體魚軌跡中篩選黃鰭鮪之回訊,以向下游動且TS呈現遞增者為對象篩選,篩選之TS經水槽實驗之TS-體長關係式轉換,其平均體長 (47.53 cm) 與現場曳繩釣捕獲之黃鰭鮪體長範圍 (39 ~ 46 cm)相近,顯示篩選規則有利黃鰭鮪幼魚之判別。

To provide target strength (TS) information for estimating the body length of yellowfin tuna (Thunnus albacores, YFT) and its abundance around fish aggregating devices, ex situ TS and in situ TS were measured for reducing the by-catch of juvenile YFT. In ex situ TS measurement, two cameras synchronized with a 200 kHz echosounder were used to obtain precise TS, orientation and fork length (FL; cm) of YFT under free swimming conditions. The orientation and TS of YFT were combined for finding out how the orientation affected to the TS. On the other hand, the swim bladder volume (VSB; ml) of YFT were measured to establish the relationship between the VSB and FL. The X-ray images were taken for examining the position of swim bladder in YFT’s body. In in situ TS measurement, one hour of stationary FAD survey was conducted for analyzing the fish around FAD. After TS measurement, the troll line was used to biological sample the fish around FAD for examining the species of aggregated fish around FAD. From ex situ and in situ TS measurement, the sound scattering characteristic of living juvenile YFT were summarized as the followings:

1. The TS of juvenile yellowfin tunas with length around 25 ~ 69 cm were positive significantly related to logarithmic fork length when the 200 kHz frequency transducer was used. Furthermore, the TS of yellowfin tuna with fork length in 69 cm was 13 dB more than in 25 cm.

2. The TS of yellowfin tuna changed significantly with the orientation of yellowfin tuna, and the larger TS always expressed with the negative orientation. From the interception of TS-Log(FL) regression for the grouped orientation analysis, the largest TS of yellowfin tuna was found in the group of [−15° to −20°].

3. It’s a significant trend that the swim bladder of yellowfin tuna grew synchronized with the fork length. The development of swim bladder volume in the stage of juvenile yellowfin tuna was faster than in the stage of adult. The largest TS expressed with the orientation around -15° to -20° because the interior angle between the swim bladder and vertebra was 25° approximately in the yellowfin tuna’s body.

4. We segregated single target echoes collected in the FAD waters with condition of increasing TS while conducting downward swimming. The echoes were transformed into FL by the TS-FL equation established from the tank experiment. The mean FL (47.53 cm) was very close to those measured from yellowfin tuna sampled by troll lines (39 ~ 46 cm). The segregating method developed in this study may be useful for discrimination of young yellowfin echoes.

摘要 I
Abstract III
目錄 V
表目錄 VII
圖目錄 VIII
壹、前言 1
貳、材料與方法 8
一、 非現場活體黃鰭鮪之單體標物反射強度計測 8
(一) 活體黃鰭鮪幼魚樣本取得 8
(二) 聲探系統 9
(三) 水槽實驗設計 9
(四) 黃鰭鮪之TS擷取 10
(五) 攝影影像讀取及解析 11
(六) 魚體尾叉長計算 12
(七) 資料分析 13
二、 黃鰭鮪泳鰾體積量測 14
三、 FAD之現場TS計測調查 15
参、結果 16
一、 黃鰭鮪TS水槽實驗 16
(一) TS與FL之關係 16
(二) 俯仰角與TS之關係 17
二、 黃鰭鮪泳鰾體積 18
三、 FAD現場TS調查 20
肆、討論與結論 22
一、 活魚水槽實驗設計之限制與改良 23
二、 影響TS之因素及FAD現場黃鰭鮪體長推定 24
三、 現場黃鰭鮪幼魚之辨別與減少混獲運用 28
四、 結論與展望 32
伍、參考文獻 34


Anon (1925). Echo sounding. Nat., 115: 689-690.
Anon (2000). Report of the Fourth Session of the Indian Ocean Tuna Commission. IOTC/S/04/99/R[E], 56pp.
Atapattu, A. R. (1991). The experience of fish aggregating devices for fisheries resource enhancement and management in Sri Lanka. RAPA Report, 11: 16-40
Benoit-Bird, K. J. and W. W. L. Au (2001). Target strength measurements of Hawaiian mesopelagic boundary community animals. J. Acoust. Soc. Am., 110 (2).
Bertrand, A. E. and E. Josse (2000). Tuna target-strength related to fish length and swimbladder volume. ICES J. Mar. Sci., 57: 1143-1146.
Bertrand, A., E. Josse and J. Massé (1999). In situ acoustic target-strength measurement of bigeye (Thunnus obesus) and yellowfin tuna (Thunnus albacares) by coupling split-beam echosounder observations and sonic tracking. ICES J. Mar. Sci., 56: 51-60.
Bosewll, K. M. and C. A. Wilson (2008). Side-aspect target strength measurements of bay anchovy (Anchoa mitchilli) and Gulf menhaden (Brevoortia patronus) derived from ex situ experiments. ICES J. Mar. Sci., 65: 1012–1020.
Buckley, R. M., D. G. Itano and T. W. Buckley (1989). Fish aggregation device (FAD) enhancement of offshore fisheries in American Samoa. Bull. Mar. Sci., 44: 942-949.
Buckley, T. W. and B. S. Miller (1994). Feeding habits of yellowfin tuna associated with fish aggregation. Bull. Mar. Sci., 55(2-3): 445-459.
Castro, J. J., A. Santiago and T. Santana-Ortega (2002). A general theory on fish aggregation to floating object: an alternative to the meeting point hypothesis. Rev. Fish Biol. Fish., 11: 255-277.
Domingo, A., M. Rios and M. Pons (2008). Spatioal and temporal distribution, length composition and environmental relations of the yellowfin tuna (Thunnus albacores). SCRS, (111).
Foote, K. G. (1980). Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. J. Acoust. Soc. Am., 67(6).
Foote, K. G. (1985). Rather-high-frequency sound scattering by swimbladdered fish. J. Acoust. Soc. Am., 78(2).
Foote, K. G. (1991). Summary of methods for determining fish target strength at ultrasonic frequencies. ICES J. Mar. Sci., 48: 211-217.
Foote, K. G., A. Aglen and O. Nakken (1986). Measurements of fish target strength with a split-beam echosounder. J. Acoust. Soc. Am., 80: 612-621.
Fréon, P. and L. Dagorn (2000). Review of fish associative behavior: Toward a generalization of the meeting point hypothesis. Rev. Fish Biol. Fish., 10(2): 183-207.
Gauthier, S. and G. A. Rose (2001). Target strength of encaged Atlantic redfish (Sebastes spp.). ICES J. Mar. Sci., 58: 562-568.
Gomes, C., R. Mahon, W. Hunte and S. Singh-Renton (1998). The role of drifting objects in pelagic fisheries in the Southeastern Caribbean, Fish. Res., 34: 47-58.
Graham, J. B. and K. A. Dickson (2004). Tuna comparative physiology. J. Exp. Biol., 207: 4015-4024.
Hazen, E. L. and J. K. Horne (2004). Comparing the modeled nd measured target-strength variability of walleye pollock, Theragra chalcogramma. ICES J. Mar. Sci., 61: 363-377.
Higashi, G. (1994). Ten years of fish aggregating device (FAD) design development in Hawaii. Bull. Mar. Sci., 55: 651-666.
Holland, K. N., R. W. Brill and R. K. C. Chang (1990). Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. Fish. Bull., 88: 493-507.
IATTC (2008). Annual report. Inter-American Tropical Tuna Commission. ISSN: 0074-1000.
Jørgensen, R. and K. Olsen (2002). Acoustic target strength of capelin measured by single target tracking in a controlled cage experiment. ICES J. Mar. Sci., 59: 1081-1085.
Jurvelius, J., F. R. Knudsen, H. Balk, T. J. Marjomaki, H. Peltonen, J. Taskinen, A. Tuomaala and M. Viljanen (2008). Echo-sounding can discriminate between fish and macroinvertebrates in fresh water. Freshw. Biol., 53: 912-923.
Kang, D., S. Cho, C. Lee, J. G. Myoung and J. Na (2009). Ex situ target-strength measurements of Japanese anchovy (Engraulis japonicas) in the coastal Northwest Pacific. ICES J. Mar. Sci., 66: 1219-1224.
Kang, M., M. Furusawa and K. Miyashita (2002). Effective and accurate use of difference in mean volume backscattering strength to indentify fish and plankton. ICES J. Mar. Sci., 59: 794-804.
Kimura, K. (1929). On the detection of fish-groups by an acoustic method. J. Imp. Fish. Inst. Tokyo, 24: 41-45.
Kumoru, L. (2007). Catch information from the fad-based domestic tuna purse seine fishery in Papua New Guinea. WCPFC-SC3-FT SWG/WP-8. Honolulu, U. S. A. 1-18.
Lawson, G. L., M. Barange and P. Fréon (2001). Species identification of pelagic fish school on the South African continental shelf using acoustic descriptors and ancillary information. ICES J. Mar. Sci., 58: 275-287.
MacLennan, D. N. (1990). Acoustical measurement of fish abundance. J. Acoust. Soc. Am., 87: 1-15.
McQuinn, I. H. and P. D. Winger (2003). Tilt angle and target strength: target tracking of Atlantic cod (Gadus morhua) during trawling. ICES J. Mar. Sci., 60: 575-583.
Ménard, F., A. Fonteneau, D. Gaertner, V. Nordstrom, B. Stéquert and E. Marchal (2000). Exploitation of small tunas by a purse-seine fishery with fish aggregating devices and their feeding ecology in an eastern tropical Atlantic ecosystem. ICES J. Mar. Sci., 57: 525-530.
Mukai, T. and K. Iida (1996). Depth dependence of target strength of live kokanee salmon in accordance with Boyle’s law. ICES J. Mar. Sci., 53: 245–248.
Nelson, P. A. (2004). Reducing juvenile bigeye tuna mortality in FAD sets. SCTB 17, Majuro, 9-18 August 2004, FTWG-7G.
Nesse, T. L., H. Hobaek and R. J. Korneliussen (2009). Measurements of acoustic-scattering spectra from the whole and parts of Atlantic mackerel. ICES J. Mar. Sci., 66: 1169–1175.
Nielsen, J. R. and B. Lundgren (1999). Hydroacoustic ex situ target strength measurements on juvenile cod (Gadus morhua L.). ICES J. Mar. Sci., 56: 627-639.
Rose, G. A. (2009). Variations in the target strength of Atlantic cod during vertical migration. ICES J. Mar. Sci., 66: 1205-1211.
Rose, G. A. and D. R. Porter (1996). Target-strength studies on Atlantic cod (Gadus morhua) in Newfoundland waters. ICES J. Mar. Sci., 53: 259-265.
Simmonds, J. and D. MacLennan (2005). Fisheries Acoustics Theory and Practices. 2nd edition, Blackwell science, 437 pp.
Soule, M. A., I. Hampton and M. R. Lipiński (2010). Estimating the target strength of live, free-swimming chokka squid Loligo reynaudii at 38 and 120 kHz. ICES J. Mar. Sci., 67: 1381–1391.
Sunardi, A. Yudhana, J. Din and R. B. R. Hassan (2008). Swimbladder on fish target strength. TELKOMNIKA. Vol. 6, No. 1 April 2008: 57-62.
吳龍靜 (1993)。利用聲探回訊直接評估日本鮆魚群豐度之基礎研究。國立台灣海洋大學博士學位論文,186頁。
吳明忠 (1996)。白腹鯖與眞魚參活魚單體標物反射強度之硏究。國立臺灣大學碩士學位論文,45頁。
吳龍靜、翁進興 (2006)。台灣西南及東部海域之中層人工浮魚礁聚魚效益比較。水產試驗所沿近海資源研究中心,水試專訊,(16):第19-23頁。
呂學榮 (1995)。利用數位影像技術處理聲探回訊之研究—以本省東北部沿海生物量評估及群集特性分析為例。國立台灣海洋大學博士學位論文,157頁。
李明安 (1991)。枋寮沿海鮆科稚魚漁況變動及其現存量評估之研究。國立台灣海洋大學博士學位論文,214頁。
張信 (2005)。青海湖裸鯉資源量的水聲學評估。中國華中農業大學碩士學位論文,57頁。
曾綺停 (2009)。人工集魚器聚集鮪類之單體標物反射強度之研究。國立臺灣海洋大學碩士學位論文,91頁。
劉仁銘、吳繼倫、張引 (2005)。台灣東北部白腹鯖與花腹鯖現場標物反射強度與尾叉長關係式之研究。水產研究,13 (2):第1-9頁。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top