跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬雷
研究生(外文):Lei Ma
論文名稱:除水技術對於生質柴油燃料特性影響的研究
論文名稱(外文):Investigation on influences of water-removal techniques on fuel properties of biodiesel
指導教授:林成原林成原引用關係
指導教授(外文):Cherng-Yuan Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:140
中文關鍵詞:轉酯化含水率燃料性質分子篩電解
外文關鍵詞:transeterificationwater contentfuel propertiesmolecular sieveelectrolysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:552
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
以強鹼轉酯化製備生質柴油過程,由於過多水份的存在可能容易造成反應效率低落與油品性質劣化,但若將水份完全除去將使製造成本大幅提升,因此尋找適當含水率為生質柴油研究的重要課題之一。本研究分四部份,分別為原料油含水率對於生質柴油性質的影響、震盪型態與操作時間對於分子篩除水效率的影響、利用電極輸入功連續除水的油品性質、兩種除水技術比較等。本研究首先將棕櫚原料油調配成不同的含水率,再進行鹼製程轉酯化反應後,測試其油品燃料性質。實驗結果發現當棕櫚原料油初始含水率為 0.05 wt. % 時,油品的長碳鏈脂肪酸與飽和脂肪酸含量較高,有較高的脂肪酸甲酯含量、閃火點及燃點,且具有較低的酸價、含水率與冷濾點等。在第二部份的實驗,採用吸附性材料分子篩配合不同震盪型態測試對於棕櫚油與乙醇的除水效率。結果顯示利用迴旋式震盪可降低分子篩結構的破壞,且除水率較電磁攪拌方式與靜態吸附方式分別高約 6 wt. % 與 5 wt. % 。第三部份利用單對與雙對電極及不同輸入電功分別進行電解轉酯化反應過程中連續除水,發現提高輸入電功時,成品油的含水率、熱值、比重、閃火點與燃點等性質都有降低的趨勢。另外,在輸入相同電功時,雙對電極電解轉酯化後的油品其酸價與含水率皆較單對電極者低,尤以酸價較顯著。最後比較本實驗所測試的兩種除水技術,發現利用分子篩搭配迴旋震盪方式進行除水的效率較當輸入功為 11 J/g palm oil 時的雙電極電解除水高 9 倍。
Excess water existence in the reactant mixture during the strong alkali transesterification process for biodiesel production may deteriorate reacting rate and in turn fuel properties. However, complete removal of water content may result in higher biodiesel production cost. The optimum water content in the animal fat or vegetable oil is therefore significant concern for biodiesel research. This study includes four parts, which are the investigations of the effects of water content in raw lipid on fuel properties of biodiesel, effects of vibrating type and time on water- removal efficiency of molecular sieve, biodiesel properties after water- removal by electrodes, and comparison of water-removal by those two techniques. The raw palm oil was adjusted to contain various water ratios and then underwent alkali transesterification. The experimental results show that the biodiesel product had the highest fatty-acids content of long carbon chains, saturated fatty acids, and total fatty acid methyl esters, highest flash point and ignition point while the lowest acid value, water content and cold filter plugging point when the initial water content of 0.05 wt. % in the raw palm oil was used. In the second experimental part, the water-removal efficiency of molecular sieves along with varied vibrating types for palm oil and ethanol was investigated. It was shown that molecular sieves in a rotating vibrator absorbed more water content than those molecular sieves in a magnetic agitator and in a static beaker by 6 wt. % and 5 wt. %, respectively. The destroying extent of the molecular sieves in the rotating vibrator was less than those in the magnetic agitator. One-pair and two-paired electrodes were thereafter used to continuously electrolyze and remove the water content in the raw lipid. The water content, heating value, specific gravity, flash point and ignition point of the biodiesel product were observed to decrease with the increase of input electrolyzing energy during the transesterification reaction. In addition, the two-paired electrodes appeared to have superior efficiency to reduce acid value and water content, particularly the acid value than the one-paired electrodes. Finally, it was found that molecular sieves in the rotating vibrator removed 9 times of water content in the raw palm oil in comparison with that by two-paired electrodes with input energy of 11 J / g palm oil.
摘要............................................................................................................I
Abstract.....................................................................................................III
目錄.......................................................................................................... V
表目錄.................................................................................................. VIII
圖目錄.......................................................................................................X
第一章 前言.............................................................................................1
1.1研究背景.................................................................................1
1.2研究動機.................................................................................3
1.3研究目的.................................................................................3
第二章 文獻回顧......................................................................................5
2.1 生質柴油特性.........................................................................5
2.2 生質柴油製備方法..............................................................10
2.2.1轉酯化法.......................................................................10
2.2.2超臨界技術...................................................................12
2.2.3酵素製程…………..…………………………………..13
2.2.4熱裂解法………………………………………………13
2.3 水份對於生質柴油鹼製程的影響......................................14
2.4 製程除水技術.....................................................................17
2.5 電化學應用於溶液與生質柴油處理……………………..18
第三章 實驗設備與方法........................................................................22
3.1 實驗材料.............................................................................22
3.1.1樣品油...........................................................................22
3.1.2藥品...............................................................................22
3.2 實驗設備.............................................................................23
3.2.1製備生質柴油設備.......................................................23
3.2.2油品性質測試設備.......................................................25
3.2.3除水技術設備……………………………………........28
3.3 實驗方法.............................................................................30
3.3.1以不同含水率的棕櫚原料油製備生質柴油...............30
3.3.2分子篩於不同震盪型態與操作時間的除水測試.......31
3.3.3電極輸入功連續除水性能測試…………....................32
3.4 油品性質測試……………………………………………..34
第四章 結果與討論................................................................................48
4.1 原料油含水率對於生質柴油性質的影響.............………..48
4.2 震盪型態與操作時間對於分子篩除水效率的影響.........60
4.2.1不同震盪型態的影響…………………...……………60
4.2.2迴旋震盪對於分子篩吸附能力的影響……………62
4.2.3吸附時間的影響…………………………………...…62
4.3 利用電極輸入功連續除水的油品性質...............................63
4.4 兩種除水技術之比較...........................................................71
第五章 結論與未來研究建議................................................................73
5.1 結論.......................................................................................73
5.2 未來研究建議.......................................................................75
參考文獻.................................................................................................77
表..............................................................................................................92
圖............................................................................................................108
附錄
附錄一 不同含水率的棕櫚油經轉酯化後的油品性質數據......138
附錄二 轉酯化過程以不同電極數目與輸入電功電解除水後的油品性質數據…………………………………………………………....139

1. I.D. Gil, A.M. Uyazán, J.L. Agular, G. Rodríguez, L.A. Caicedo, Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation, Brazilian Journal of Chemical Engineering, Vol. 25, pp. 207-215, 2008.
2. A. Ghaee, R.S. Gharebagh, N. Mostoufi, Dynamic optimization of the benzene extractive distillation unit, Brazilian Journal of Chemical Engineering, Vol. 25, pp. 765-776, 2008.
3. 劉謹瑜,以中孔徑矽分子篩作為氣相 PAHs 吸附劑之探討,國立中央大學化學研究所碩士學位論文, pp. 18-31,2008。
4. 巫柔誼,以滲透蒸發技術分離醇類水溶液及酯化反應之研究,國立成功大學化學工程研究所碩士學位論文, pp. 4-8,2004。
5. K. Okamoto, H. Kita, K. Horii, K.T.M. Kondo, Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures, Industrial and Engineering Chemistry Research, Vol. 40, pp. 163-175, 2001.
6. 陳威銘,利用分子篩分離氨氣與水氣之研究,國立成功大學機械工程學系碩士學位論文, pp. 6-23 , 2007 。
7. C. Pahl, C. Pasel, M. Luckas, D. Bathen, Adsorptive water removal from organic solvents in the ppm – region, Chemi Ingenieur Technik, Vol. 83, pp. 177-182, 2011.
8. A. Murugesan, C. Umarani, R. Subramanian, N. Nedunchezhian, Bio-diesel as an alternative fuel for diesel engines-A review, Renewable and Sustainable Energy Reviews, Vol. 13, pp. 653-662, 2009.
9. G. Karavalakis, G. Fontaras, E. Bakeas, S. Stournas, Effect of biodiesel origin on the regulated and PAH emissions from a modern passenger car, Society of Automotive Engineers Technical Paper, 2011-01-0615, 2011.
10. E.K. Farina, D.P. Kiel, R. Roubenoff, E.J. Schaefer, L.A. Cupples, K.L. Tucker, Protective effects of fish intake and interactive effects of long – chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the framingham osteoporosis study, The American Journal of Clinical Nutrition, Vol. 93, pp. 1142-1151, 2011.
11. J.V. Gerpen, B. Shanks, R. Pruszko, D. Clements, G. Knothe, Biodiesel Production Technology, National Renewable Energy Laboratory, Report No. SR-510-36244, pp. 11-30, 2004.
12. 鄭鴻暉,改善低溫流動特性的生質柴油製程探討,國立臺灣海洋大學輪機工程學系碩士學位論文, pp. 19-21,2009。
13. Bureau of Standards, Metrology & Inspection, M.O.E.A., R.O.C., Method of test for gross calorific values of solid mineral fuels by the calorimeter bomb method, and calculation of net calorific value, CNS-10835, M3154, 2005.
14. 李昱廷,利用超重力填充床生產生質柴油的油品性質及引擎特性,國立臺灣海洋大學輪機工程學系碩士學位論文, pp. 37-75 , 2008 。
15. D. Kusdiana, S. Saka, Effects of water on biodiesel fuel production by supercritical methanol treatment, Bioresource Technology, Vol. 91, pp. 289-295, 2004.
16. M.S. Carvalho, R.A. Lacerda, J.P.B. Leão, J.D. Scholten, B.A.D. Neto, P.A.Z. Suarez, In situ generated palladium nanoparticles in imidazolium – based ionic liquids: a versatile medium for an efficient and selective partial biodiesel hydrogenation, Catalysis Science & Technology, Vol. 1, pp. 480-488, 2011.
17. M. García, A. Gonzalo, J.L. Sánchez, J. Arauzo, C. Simoes, Methanolysis and ethanolysis of animal fats: a comparative study of the influence of alcohols, Chemical Industry & Chemical Engineering Quarterly, Vol. 17, pp. 91-97, 2011.
18. A.E.B. Cruz, J.A.M. Banda, H. Mendoza, C.E. Ramos-Galvan, M.A. M. Melo, D. Esquivel, Pt and Ni supported catalysts on SBA-15 and SBA-16 for the synthesis of biodiesel, Catalysis Today, Vol. 166, pp. 111-115, 2011.
19. 柯清水,石油化學概論,正文書局, pp. 131-133 , 1990 。
20. T. Zhang, Y. Chao, N. Liu, J. Thompson, M. Garcia, B.B. He, J.V. Gerpen, S. Chen, Case study of biodiesel – diesel blends as a fuel in marine environment, Advances in Chemical Engineering and Science, Vol. 1, pp. 65-71, 2011.
21. G. Sorensen, D.V. Pedersen, A.K. Norgaard, K.B. Sorensen, S.D. Nugaard, Microbial growth studies in biodiesel blends, Bioresource Technology, Vol. 102, pp. 5259-5264, 2011.
22. M.H. Siddiquee, S. Rohani, Lipid extraction and biodiesel production from municipal sewage sludges : A review, Renewable and Sustainable Energy Reviews, Vol. 15, pp. 1067-1072, 2011.
23. G. Brunner, Processing of nature materials by supercritical gases, Proceedings of the 5th Meeting on Supercritical Fluids, Materials and Natural Products Processing, International Society for the Advancement of Supercritical Fluids, Nice, France, pp. 413-424, 1998.
24. J. Ji, Y. Ding, C. Yang, H.Huang, Y. Ding, Effects of reverse micelles-complexation-supercritical CO2 extraction conditions on removal of Pb, Hg and As ions in lotus leaf, Advanced Materials Research, Vol. 233-235, pp. 585-588, 2011.
25. H. Taher, S.A. Zuhair, A.A. Marzouqui, I. Hashim, Extracted fat from lamb meat by supercritical CO2 as feedstock for biodiesel production, Biochemical Engineering Journal, Vol. 55, pp. 23-31, 2011.
26. H. Fukuda, A. Kondo, H. Noda, Biodiesel fuel production by transesterification of oils, Journal of Bioscience and Bioengineering, Vol. 92, pp. 405-416, 2001.
27. 莊傑凱,脂肪酶催化米糠油合成生質柴油,輔仁大學食品科學系碩士學位論文, pp. 9-57 , 2008 。
28. J.W. Chen, W.T. Wu, Regeneration of immoblized Candida antarctica lipase for transesterification, Journal of Bioscience and Bioengineering, Vol. 95, pp. 466-469, 2003.
29. D. Royon, M. Daz, G. Ellenrieder, S. Locatell, Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent, Bioresource Technology, Vol. 98, pp. 648-653, 2007.
30. M.K. Modi, J.R.C. Reddy, B.V.S.K. Rao, R.B.N. Prasad, Lipase-mediated transformation of vegetable oils into biodiesel using propan-2-ol as acyl acceptor, Biotechnology Letters, Vol. 28, pp. 637-640, 2006.
31. Y. Xu, W. Du, D. Liu, J. Zeng, A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium, Biotechnology Letters, Vol. 25, pp. 1239-1241, 2003.
32. M.M. Soumanou, U. T. Bornscheuer, Lipase-catalyzed alcoholysis, of vegetable oils, European Journal of Lipid Science and Technology, Vol. 105, pp. 656-660, 2003.
33. H. Noureddini, X. Gao, R.S. Phlkana, Immobilized Pseudomonas cepacia lipase for biodiesel fule production from soybean oil, Bioresource Technology, Vol. 96, pp. 769-777, 2005.
34. R.D. Abigor, P.O. Uadia, T.A. Foglia, M.J. Haas, K.C. Jones, E. Okpefa, J.U. Obibuzor, M.E. Bafor, Lipase- catalysed production of biodiesel fuel from some Nigerian lauric oils, Biochemical Society Transactions, Vol. 28, pp. 979-981, 2000.
35. Y. Shimada, Y. Watanabe, A. Sugihara, Y. Tominaga, Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing, Journal of Molecular Catalysis B: Enzymatic, Vol. 17, pp. 133-142, 2002.
36. T. Samukawa, M. Ksieda, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, H. Fukuda, Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil, Journal of Bioscience and Bioengineering, Vol. 90, pp. 180-183, 2000.
37. T. Tan, K. Nie, F. Wang, Production of biodiesel by immobilized Candida sp. lipase at high water content, Applied Biochemistry and Biotechnology, Vol. 128, pp. 109-116, 2006.
38. R. Tiwari, B.S. Rana, R. Kumar, D. Verma, R. Kumar, R.K. Joshi, M.O. Garg, A.K. Sinha, Hydrotreating and hydrocracking catalysts for processing of waste soya-oil and refinery-oil mixtures, Catalysis Communications, Vol. 12, pp. 559-562, 2011.
39. D. Meier, O. Faix, State of the art of applied fast pyrolysis of lignocellulosic materials: a review, Bioresource Technology, Vol.68, pp. 71-77, 1999.
40. F.A. Agblever, S. Besler, Inorganic compounds in biomass feedstocks (1): effect on the quality of fast pyrolysis oils, Energy and Fuels, Vol. 10, pp. 293-298,1996.
41. E.D.C. Oliverira, P.R.D. Silva, A.P. Ramos, D.A.G. Aranda, D.M.G. Freire, Study of soybean oil hydrolysis catalyzed by Thermomyces Ianuginosus lipase and its application to biodiesel production via hydroesterification, Enzyme Research, Vol. 2011, pp. 1-8, 2011.
42. F. Ma, L.D. Clements, M.A. Hanna, The effects of catalyst, free fatty acids, and water on transesterification of beef tallow, Transactions of the ASABE, Vol. 41, pp. 1261-1264, 1998.
43. F. Ma, M.A. Hanna, Biodiesel production: a review, Bioresource Technology, Vol. 70, pp. 1-15, 1999.
44. M. Canakci, J.V. Gerpen, Biodiesel production via acid catalysis, Transaction of the ASAE, Vol. 42, pp. 1203-1210, 1999.
45. W.J. Shi, H.Q. Liu, S.B. Feng, E.L. Zheng, Study on preparation of biodiesel with low acid value rapeseed oil, Renewable Energy Resources, Vol. 27, pp. 37-39, 2009.
46. Y. Tang, Transesterification of rapeseed oil to biodiesel by using CaO as a heterogeneous catalyst, Journal of Anhui Agricultural Science, Vol.37, 10858-10859, 2009.
47. F. Yan, Z.H. Yuan, P.M. LÜ, W. Luo, L.M. Yang, L. Deng, Synthesis of biodiesel by Fe(II)-Zn double-metal cyanide complexes, Journal of Fuel Chemistry and Technology, Vol. 38, pp. 281-286, 2010.
48. A. Karmakar, S. Karmakar, S. Mukherjee, Properties of various plants and animals feedstocks for biodiesel production, Bioresource Technology, Vol. 101, pp. 7201-7210, 2010.
49. H. Zhou, G. Zuo, Discussion on the production technology of biodiesel reaching BD100 standard, China Oils and Fats, Vol. 34, pp. 59-62, 2009.
50. 方士榮,以棕櫚油泥漿製備生質柴油並降低油品含水量,南台科技大學奈米科技研究所碩士學位論文, pp. 69-72 , 2009 。
51. B. Lu, Improvement of chemical production process of biodiesel, China Oils and Fats, Vol. 34, pp. 46-48, 2009.
52. 蘇明德,高吸水性高分子,科學發展, Vol. 450 , pp. 66-69 ,2010 。
53. 林東源,電混凝技術應用在肉品加工廢水處理之探討,國立臺灣海洋大學食品科學系碩士學位論文, pp. 14-30 , 2007 。
54. C.S. Dunleavy, J.A. Curran, T.W. Clyne, Plasma electrolytic oxidation of aluminium networks to form a metal-cored ceramic composite hybrid material, Composition Science and Technology, Vol. 71, pp. 908-915, 2011.
55. H. Xie, T. Saito, M.A. Hickner, Zeta potential of ion-conductive membranes by streaming current measurements, Langmuir, Vol. 27, pp. 4721-4727, 2011.
56. Y. Sakamura, Effect of alkali and alkaline-earth chloride addition on electrolytic reduction of UO2 in LiCl salt bath, Journal of Nuclear Materials, Vol. 412, pp. 177-183, 2011.
57. W. Guan, J.H. Park, P.S. Krstic, M.A. Reed, Non-vanishing ponderomotive AC electrophoretic effect for particle trapping, Nanotechnology, Vol. 22, pp. 1-8, 2011.
58. S. Modi, M. Wei, J.L. Mead, C.M.F. Barry, Effect of processing parameters on the electrophoretic deposition of carbon black nanoparticles in moderately viscous systems, Langmuir, Vol. 27, pp. 3166-3137, 2011.
59. H.T. Kim, D.W. Kim, J.S. Shin, D. Whang, D. Ahn, S.W. Hwang, Probing the continuous radio frequency spectrum of water relaxation using a carbon nanotube, Journal of Physics: Condensed Matter, Vol. 23, pp. 1-6, 2011.
60. A. Yuksel, M. Sasaki, M. Goto, Electrolysis reaction pathway for lactic acid in subcritical water, Industrial & Engineering Chemistry Research, Vol. 50, pp. 728-734, 2011.
61. A. Pozlo, M.D. Francesco, Z. Jovanovic, S. Tosti, Pd-Ag hydrogen diffusion cathode for alkaline water electrolysers, International Journal of Hydrogen Energy, Vol. 36, pp. 5211-5217, 2011.
62. D. Rameshraja, S. Suresh, Treatment of tannery wastewater by various oxidation and combined processes, Internal Journal of Environmental Research, Vol. 5, pp. 349-360, 2011.
63. S. Matsuda, T. Wada, A. Suzuki, T. Suzuki, Development of combined treatment of electro-coagulation and flocculation for various types of wastewater, Advanced Materials Research, Vol. 222, pp. 293-296, 2011.
64. P. Millet, F. Andolfatto, R. Durand, Design and performance of a solid polymer electrolyte water electrolyzer, International Journal of Hydrogen Energy, Vol. 21, pp. 87-93, 1996.
65. L.L. Tan, Z.L. Huang, H. Huang, Y.W. Zou, H. Li, Transfer efficiency optimal control of magnetic resonance coupled system of wireless power transfer based on frequency control, Science China Technological Sciences, Vol. 54, pp. 1428-1434, 2011.
66. L.F.D. Camacho, Z. Puentes, J. Calderón, E. Lucena, J. Moncada, K. Saavedra, Assisted electrochemical hydroconversion of heterocompounds present in fuel and oil using active hydrogen passing through a Pd membrane, Petroleum Science and Technology, Vol. 29, pp. 529-534, 2011.
67. G. Guan, K. Kusakabe, Synthesis of biodiesel fuel using an electrolysis method, Chemical Engineering Journal, Vol. 153, pp. 159-163, 2009.
68. Z.Y. Hu, Y.L. Li, P.K. Shen, Hydrogen production by methanol electrolysis, Battery Bimonthly, Vol. 36, pp. 383-384, 2006.
69. Corning Incorporated, Instruction manual for PC-420D, 2007.
70. IKA Works, ULTRA-TURRAX T50 data sheet, 2011.
71. Parr Instrument Company, 1261 isoperibol bomb calorimeter operation instrument manual, 1994.
72. Cannon Instrument Company, Certificate of calibration of Viscometer No. 1 K698, 2006.
73. Mettler-Toledo Pac Rim AG Taiwan Branch, DL-31/38 operation instrument manual, 2003.
74. Petroleum Analyzer Company, HAD-620 operation instrument manual, 2003.
75. SHIMADZU CORPORATION, GC-14A, operation instrument manual, 2011.
76. Koehler Instrument Company, K45900 operation instrument manual, 2008.
77. Metrohm AG, 785 DMP Titrino instructions for use, 2009.
78. Yihder Technology Co., Ltd, 2009/2010 general catalogue, 2009.
79. 登盈儀器有限公司,高溫爐使用說明書, 2009。
80. 艾克密國際有限公司,分子篩使用說明, 2010。
81. Bureau of Standards, Metrology & Inspection, M.O.E.A., R.O.C., Fat and oil derivatives-fatty acid methyl esters (FAME) - determination of ester and linolenic acid methyl ester contents, CNS-15051, K61127, 2007.
82. International Organization for Standardization, Determination of flash point-rapid equilibrium closed cup method, ISO 3679:2004, 2004.
83. G.L. Borman, K.W. Ragland, Combustion Engineering, McGraw-Hill, Singapore, pp. 35-36, 1998.
84. C.T.S.P. Charvet, M.R.J.V. Duya, A.V.G. Miller, L.F. Razon, Evalution of the biodiesel fuel properties of fatty acid methyl esters from Carica papaya L., The Philippine Agricultural Scientist, Vol. 94, pp. 88-92, 2011.
85. S. Pinzi, D. Leiva, G. Arzamendi, L.M. Gandia, M.P. Dorado, Multiple response optimization of vegetable oils fatty acid composition to improve biodiesel physical properties, Bioresource Technology, Vol. 102, pp. 7280-7288, 2011.
86. D. Kusdiana, S. Saka, Effects of water on biodiesel fuel production by supercritical methanol treatment, Bioresource Technology, Vol. 91, pp. 289-295, 2004.
87. F.K. Bangash, H. Khattak, Effect of deep fat frying on physic-chemical properties of Silybum Marianum and sunflower seed oils, Journal of the Chemical Society of Pakistan, Vol. 28, pp. 121-124, 2006.
88. Y. Tsuchiya, Y. Kaneki, Y. Yamakoshi, H2SO4/CaO-catalyzed process for biodiesel production from high acid value Jatropha curcas crude oil, Joural of Chemical Engineering if Japan, Advance Publication, 2011.
89. E. Alptekin, M. Canalci, Optimization of transesterification for methyl ester production from chicken fat, Fuel, Vol. 90, pp. 2630-2638, 2011.
90. E. Magowan, A.M. Fearon, D.C. Patterson, The effect of supplementary grass silage and standard concentrate on milk fat fatty acid composition and iodine value when cows are fed a whole rapeseed-based concentrate at pasture, Irish Journal of Agricultural and Food Research, Vol. 49, pp. 129-139, 2011.
91. E.D. Tomak, M. Hughes, U.C. Yildiz, H. Viitanen, The combined effects of boron and oil heat treatment on beech and Scots pone wood properties. Part 1: Boron leaching, thermogravimetric analysis, and chemical composition, Journal of Materials Science, Vol. 46, pp. 598-607, 2011.
92. X.G. Wang, B. Zheng, Z.H. Huang, N. Zhang, Y.J. Zhang, E.J. Hu, Performance and emissions of a turbocharged, high-pressure common rail diesel engine operating on biodiesel/diesel blends, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 225, 127-139, 2011.
93. G.S. Longo, M.O.D.L. Cruz, I. Szleifer, Molecular theory of weak polyelectrolyte gels: the role of pH and salt concentration, Macromoculecules, Vol. 44, pp. 147-158, 2011.
94. F.G. Lepri, E.S. Chaves, M.A. Vieira, A.S. Ribeiro, A.J. Curtius, L.C.C. DeOliveira, R.C. DeCampos, Determination of trace elements in vegetable oils and biodiesel by atomic spectrometric techniques-a review, Applied Spectroscopy Reviews, Vol. 46, pp.175-206, 2011.
95. G. Knothe, K.R. Steidley, Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components, Fuel, Vol. 84, pp. 1059-1065, 2005.
96. A. Nezihe, D. Elif, Y. Özlem, E.A. Tunçer, Microwave heating application to produce dehydrated castor oil, Industrial & Engineering Chemistry Research, Vol. 50, pp. 398-403, 2011.
97. A. Demirbas, Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey, Energy Conversion and Management, Vol. 44, pp. 2093-2109, 2003.
98. R. Ghanei, G.R. Moradi, R.T. Kalantari, E. Arjmandzadeh, Variation of physical properties during transesterification of sunflower oil to biodiesel as an approach to predict reaction progress, Fuel Processing Technology, Vol. 92, pp. 1593-1598, 2011.
99. M.I. Mohammed, Z.U. Hamza, Physicochemical properties of oil extracts from Sesamum Indicum L. seeds grown in jigawa state-nigeria, Journal of Applied Sciences and Environmental Management, Vol. 12, pp. 99-101, 2008.
100. N.U. Soriano Jr., V.P. Migo, M. Matsumura, Ozonized vegetable oil as pour point depressant for neat biodiesel, Fuel, Vol. 85, pp. 25-31, 2006.
101. A.J. Paula, D. Stéfani, A.G.S. Filho, Y.A. Kim, M. Endo, O.L. Alves, Surface chemistry in the process of coating mesoporous SiO2 onto carbon nanotubes driven by the formation of Si-O-C Bonds, Chemistry - A European Journal, Vol. 17, pp. 3228-3237, 2011.
102. J. Kumar, A. Bansal, Application of artificial neural network to predict properties of diesel – biodiesel blends, Kathmandu university Journal of Science, Engineering and Technology, Vol. 6, pp. 98-103, 2010.
103. G. Sørensen, K.B. Sørensen, H.O. Hansen, S.D. Nygarrd, Fuel for the future: development of new fuels, e.q. biofuels, Applied Microbiology and Molecular Biology in Oilfield Systems, Part 5, pp. 219-228, 2011.
104. 林義偉,超臨界甲醇提煉皂角高酸油為生質柴油之研究,國立臺灣海洋大學輪機工程學系碩士學位論文, pp. 50-75 , 2007 。
105. Y. Inoue, S. Kume, K. Kawabe, T. Kanda, J. Senda, Research of biodiesel fuel to lighter quality by mixing light cycle oil ( 1st Report, analysis of basic spray characteristics) , Transactions of the Japan Society of Mechanical Engineers Series B, Vol. 77, pp. 353-359, 2011.
106. B.K. Bala, Studies on biodiesels from transformation of vegetable oils for diesel engines, Energy Education Science and Technology, Vol. 15, pp. 1-45, 2005.
107. B.R. Moser, Biodiesel production, properties, and feedstocks, Biofuels, Springer, pp. 285-347, 2011.
108. J.A. Siles, M.A. Martin, A.F. Chica, A. Martin, Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing, Bioresource Technology, Vol. 101, pp. 6315-6321, 2010.
109. E. Butler, Y.T. Hnung, R.Y.L. Yeh, M.S.A. Ahmad, Electrocoagulation in wastewater treatment, Water, Vol. 3, pp. 495-525, 2011.
110. A. Shah, G. Zhang, B.R. Hamaker, O.H. Campanella, Rheological properties of a soluble self-assembled complex from starch, protein and free fatty acids, Journal of Food Engineering, Vol. 105, pp. 444-452, 2011.
111. R.O. Dunn, Specific Gravity and API gravity of biodiesel and ultra-low-sulfur diesel (ULSD) blends, Transactions of the American Society of Agricultural and Biodiesel Engineers, Vol. 54, pp. 571-579, 2011.
112. B.C. Windom, T.J. Bruno, Improvements in the measurement of distillation curves. 5. Reduced pressure advanced distillation curve method, Industrial & Engineering Chemistry Research, Vol. 50, pp. 1115-1126, 2011.
113. J.M. Encinar, J.F. González, A.R. Reinares, Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel, Industrial & Engineering Chemistry Research, Vol. 44, pp. 5491-5499, 2005.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊