跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 21:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓奕任
研究生(外文):Yi-Jen Cho
論文名稱:環狀液體幕膜動力結構與性質影響之數值分析
論文名稱(外文):Numerical Analyses for Dynamic Structure and Property Effects of Annular Liquid Curtains
指導教授:闕振庚
指導教授(外文):S G Chuech
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:71
中文關鍵詞:液體幕膜
外文關鍵詞:Liquid Curtain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
液體噴流與霧化的應用相當廣泛,且無論在工業或學術上皆極具重要性,在現今工業中液體膜幕的技術被運用於產業的包括有化學反應槽、非放射性物質顆粒和可熔解材料的沖流,以及鍋爐或焚化爐排放的污染防治、甚至連氫核融合反應爐之保護系統都有運用到此項技術。
本研究首先從環狀液體膜幕理論進行分析討論,並利用此理論模式,針對不同流量下的環狀液體膜幕外型與收斂長度進行數值模擬。接著沿用上述相同條件並從動力模式的觀點,針對液體膜幕本身的流場結構進行動力分析,包括液膜厚度、速度、半徑以及角度等因素沿著X軸方向變化對環狀液體膜幕外型之影響。本研究結果顯示了數值理論所模擬之外形以及收斂長度符合物理原則,且與文獻上之實驗結果相符。
另外本研究更進一步以液膜的性質改變,對環狀液體膜幕外型的影響。作為主要研究之另一重點。這些性質的改變,包括初始厚度、初始角度,以及液膜內外壓差的變化,觀察分析液膜收斂長度與外形的變化。最後將數值計算所得之結果,除了和文獻上的實驗數據相互驗證,並與其他理論進行分析比較。驗證結果顯示本研究中之環狀液體膜幕理論模式,對於液膜外型與收斂長度的預測,不但具有良好的預測能力,而且能有流場結構之動力分析細節,深入了解物理意義。

The applications of liquid jet and atomization are quite widespread, and the technology of liquid curtains can be applied in a chemical reactor for control of toxic wastes, boiler stack emission scrubbing for pollution control, scrubbing of radioactive/non- radioactive particulate or soluble material, and especially hydrogen fusion reactor secure system.
First, the present study analyzed and discussed the theoretical model of annular liquid curtains, and used the model to numerically solve for curtain convergence lengths and liquid curtain shapes for different liquid flow rates. These numerical analyses for curtain dynamics include effects of liquid thickness, velocity, radius and curtain angle on the shape of a liquid curtain along the axial direction. The results of the present numerical simulations of liquid curtain shapes and convergence lengths demonstrate reasonable physics, and correspond with past experimental data in the literature
On the other hand, the present study also numerically observed effects of changing liquid properties of the curtain on curtain convergence lengths, and the shape of a liquid curtain. These curtain properties included initial film thickness, initial angle and pressure difference. Finally, computational results of the numerical model were compared with past experimental data of others. The comparison shows that the numerical analysis of the present study has a good prediction capability for curtain convergence length and the shape of a liquid curtain, besides the detailed dynamic structure of the curtain flow field.


摘要……………………………………………………………………I
目錄………………………………………………………………........II
表目錄…………………………………………………………………III
圖目錄……………………………………………………………........IV
符號說明…………………………………………………………........VI
第一章 導論…………………………………………………………...1
1.1研究動機……………………………………………………….1
1.2文獻回顧……………………………………………………….5
1.3研究目標……………………………………………………….7
第二章 理論方法……………………………………………………...8
2.1環狀液膜收斂長度模式……………………………………….8
2.2環狀液膜理論模式……………………………………………12
第三章 結果與討論…………………………………………………..19
3.1環狀液體膜幕外形之數值模擬………………………………19 3.2環狀液體膜幕之動力分析……………………………………24
3.3環狀液體膜幕收斂長度之驗證………………………...…….28
3.4環狀液體膜幕性質改變的影響………………………………37
3.4.1流量固定而角度變化…………………………………...38
3.4.2角度固定而流量變化…………………………………...46
3.4.3厚度對液體膜幕之影響………………………………...49
3.4.4壓差對液體膜幕之影響………………………………...57
第四章 結論與建議…………………………………………………..67
4.1目前結論………………………………………………………67
4.2未來建議………………………………………………………68
參考文獻………………………………………………..................69

1. Nagayama, Y., “Liquid Lithium Divertor System for Fusion Reactor,” Fusion Engineering and Design, Vol.84, pp.1380, 2009.
2. Jameson, G. J., Jenkins, C. E., Button, E. C., and Sader, J. E., “Water Bells Formed on the Underside of a Horizontal Plate. Part 1 Experimental investigation,” Journal of Fluid Mechanics, Vol.649, pp.19, April 25, 2010.
3. Wahono, S., Honnery, D., Soria, J., and Chojel, J., “High-Speed Visualisation of Primary Break-Up of Annular Liquid Sheet,” Experiment in Fluids, Vol.44, pp.451, March 2008.
4. Lefebvre, A.H., “Atomization And Spray,” Hemisphere Pulbishing Corp., New York., 1989.
5. Ramos, J.I. “Asymptotic analysis of compound, hollow, annular liquid jets,” Advances in Fluid Mechanics, edited by M.Rahman and C. Brebbia, pp.455, WIT Press, Southampton, 2000.
6. Kelly-Zion, P. and Chigier, N., “Experimental Investigations of Steady and Oszillating Annular Liquid Curtains with Different Surface Tensions,” Experiments in Fluids, Vol.10, pp.168, Dec 1990.
7. Li, Cheng-Yue, Allain, J. P., and Deng, Bai-Quan, “Effects of a Liquid Lithium Curtain as the First Wall in a Fusion Reactor Plasma,” Chin. Phys. Soc., No.11, 2007
8. Maniscalco, J. A. and Meier, W. R., “Liquid-Lithium ‘Waterfall’ Inertial Confinement Fusion Reactor Concept,” Transaction the American Nuclear Society, Vol.26, pp. 62. June 1977.
9. Savart, F., Ann. Chem. Phys., Vol.54, p.55, 1833.
10. Savart, F., Ibid., Vol.55, p.257, 1834.
11. Boussinesq, J., C. R. Acad. Sci., Vol.69, p.45, 1869.
12. Boussinesq, J., Ibid., Vol.157, p.89, 1913.
13. Binnie, A. M. and Squire, H. B., “Liquid jets of annular cross section,” The Engineer, Vol.171, pp.236, 1941.
14. Hopwood, F. L., “Water bells,” Proc. Phys. Soc., Vol.65, p.2, 1952.
15. Lance, G., N., and Perry, R. L., “Water bell,” Proc. Phys. Soc., Vol.66, p.1067, 1953.
16. Taylor, G. I., “The dynamics of thin sheets of fluid,” Proc. Royal Soc. of London, Vol.253, pp.289, 1959.
17. Baird, M. H. I. and Davidson, J. F., “Annular jets - I,” Chemical engineering Science, Vol.17, pp.467, 1962.
18. Martinez-Val, J. M. and Piera, M., “An Externally Guided Target for Inertial Fusion,” Fusion Technology, Vol.29, Jan. 1996.
19. Deng, B. Q., Huang, J. H., Yan, J. C., Peng, L. L. and Wang, E. Y., “Study of the effects of liquid lithium curtain as first wall on plasma,” Journal of Nuclear Materials, pp.313, pp.630, 2003.
20. Hoffman, M. A., Takahashi, R. K., and Monson, R. D., “Annular Liquid Jet Experiments,” ASME Jouranl of Fluids Enginnering, Vol.102, pp. 344, 1980.
21. Esser, P. D., and Abdel-Khalik, S. I., “Dynamics of Vertical Annular Liquid Jets,” ASME Journal of Fluids Engineering, Vol.106, pp.45 1980.
22. Ramos, J.I., “Liquid Curtain: I. Fluid Mechanics,” Chemical Engineering Science., Vol.43, No.12, pp. 3171, 1988
23. Ramos, J.I. “Analytical. Asymptotic and Numerical Studies of Liquid Curtain, and Comparison with Experimental Data, “Applied Mathe-matial Modeling, Vol.14, pp. 170, April 1990.
24. Ramos, J.I., and Pitchumani R., “Liquid Curtain: II. Gas Absorption,” Chemical Engineering Science, Vol.45, No. 6, pp. 1595, 1990.
25. Kihm, K. D., and Chigier, N. A., “Experimental Investigations of Annular Liquid Curtains,” ASME Journal of Fluids Engineering, Vol.112, March, 1990.
26. Chuech, S.G., ”Numerical Simulation of Non-swirling and swirling Annular Liquid Jets,” AIAA Journal ,Vol.31, No.6, June 1993.
27. Baird, M.H.I. and Davidson ,J.F., “Annular Jets-II,” Chemical Engineering Science ,Vol.17, pp.473-480, 1962.
28. Chuech, S.G. and Huang, Wu-cheng ,”Experiments and Numerical Simulations for Annular Liquid curtains,” Procedings of 16th Conference on combustion , Keeling , Taiwan ,2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top