|
1. Rowe-Taitt, C.A., et al., Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. Biosensors & Bioelectronics, 2000. 15(11-12): p. 579-589. 2. Cowan, J.J., R.H. Ritchie, and E.T. Arakawa, SURFACE PLASMON RESONANCE EFFECT IN GRATING DIFFRACTION. Bulletin of the American Physical Society, 1968. 13(11): p. 1413-&. 3. Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B-Chemical, 1999. 54(1-2): p. 3-15. 4. Piehler, J., A. Brecht, and G. Gauglitz, Affinity detection of low molecular weight analytes. Analytical Chemistry, 1996. 68(1): p. 139-143. 5. Goddard, N.J., D. Pollardknight, and C.H. Maule. REAL-TIME BIOMOLECULAR INTERACTION ANALYSIS USING THE RESONANT MIRROR SENSOR. 1994: Royal Soc Chemistry. 6. Clerc, D. and W. Lukosz. INTEGRATED OPTICAL OUTPUT GRATING COUPLER AS BIOCHEMICAL SENSOR. 1994: Elsevier Science Sa Lausanne. 7. G Boisde, A.H., Chemical and biochemical sensing with optical fibers and waveguides, Artech House, . 1996 8. P. K. Wei and H. L. Chou, “Optical near field in nanometallic slits,” Optics Express, Vol. 10, pp. 1418-1424,(2002). 9. S. Collin. F. Pardo, R. Teissier and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Physical Review B, Vol. 63, pp. 033107, (2001). 10. A Moreau, C Lafarge, N Laurent, K Edee and G Granet, “Enhanced transmission of slit arrays in an extremely thin metallic film,” J. Opt. A: Pure Appl. Opt., Vol. 9, pp. 165-169, (2007). 11. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Physical Review Letters, Vol. 86, pp. 5601-5603, (2001). 12. Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Physical Review Letters, Vol. 88, pp. 057403, (2002). 13. K. L. Lee,W. S. Wanga and P. K.Wei,“Sensitive label-free biosensors by using gap plasmons in gold nanoslits,” Biosensors and Bioelectronics, Vol. 24, p. 210-215, (2008). 14. R. L. Rich and D.G. Myszka, “Survey of the year 2004 commercial optical biosensor literature,” J Mol. Recognit., Vol. 18, pp. 431-478, (2005). 15. [21] D. R. Shankaran, K.V. Gobi and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B: Chem., Vol. 121, pp. 158-177, (2007). 16. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., Vol. 377, pp. 528-539, (2003). 17. J. Janata, “Principles of chemical sensors,” Plenum Press, (1989). 18. C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens Bioelectron, Vol. 15, pp. 579-589, (2000). 19. J. Piehler, A. Brecht and G. Gauglitz, “Affinity detection of low molecular weight analytes,” Anal Chem, Vol. 68, pp. 139-143, (1996). 20. D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens Actuators B, Vol. 19, pp. 581-586, (1994). 21. R. Cush , J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens Bioelectron, Vol. 8, pp. 347-353, (1993). 22. G. Jin, P. Tengvall, I. Lundström and H. Arwin, “A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions,” Analytical Biochemistry, Vol. 232, pp. 69-72, (1995). 23. G. Boisde and A. Harmer, “Chemical and Biochemical Sensing withOptical Fibers and waveguides”, Artech House, (1996). 24. C. A. Rowe-Taitt and F. S. Ligler, “Evanescent wave fiber optic Biosensors,” in F. S. Ligler and C.A. Rowe-Taitt, eds., “Optical Biosensors: Present and Future,” Elsevier, pp. 57-94, (2002). 25. J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens Actuators B, Vol. 54, pp. 3-15, (1999). 26. R. H. Ritchie, E. T. Arakawa, J. J. Cowan and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett., Vol. 21, pp.1530-1533, (1968). 27. H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer-Verlag, (1988). 28. B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators, Vol. 4, pp. 299-304, (1983). 29. M. Schena, D. Shalon, R. W. Davis and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, Vol. 270, pp. 467-470, (1995). 30. M. B. Gavin and L. S. Stuart, “Printing proteins as microarrays for high-throughput function determination,” Science, Vol. 289, pp. 1760-1763, (2000). 31. X. D. Hoa, A. G. Kirk and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens Bioelectron, Vol. 23, pp. 151-160, (2007). 32. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, Vol. 391, pp.667-669, (1998). 33. S. Kawata, “Near-Field Optics and Surface Plasmon Polaritons,” Springer, (2001). 34. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science, Vol. 297, pp. 820-822, (2002). 35. A. G. Brolo, R. Gordon, B. Leathem and K. L. Kavanagh, “Surface Plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir, Vol. 20, pp. 4813-4815, (2004). 36. L. Pang, G. M. Hwang, B. Slutsky and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett., Vol. 91, pp. 123112, (2007). 37. C. Genet and T.W. Ebbesen, “Light in tiny holes,” Nature, Vol. 445, pp. 39-46, (2007). 38. S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science, Vol. 272, pp. 85-87, (1996). 39. H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B, Vol. 26, pp. 458-480, (2008). 40. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Applied Physics Letters, Vol. 84, pp.5299-5301, (2004). 41. F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim and J. A. Rogers, “Polymer Imprint Lithography with Molecular-Scale Resolution,” Nano Letters, Vol. 4, pp. 2467-2471, (2004). 42. P. Nagpal, N. C. Lindquist, S. H. Oh and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science, Vol. 325, pp. 594-597, (2009). 43. B Liedberg, C.N., I Lundstrom, Surface plasmon resonance for gas detection and biosensing, Sens. Actuators. 1983. 44. Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003. 377(3): p. 528-539. 45. MacBeath, G. and S.L. Schreiber, Printing proteins as microarrays for high-throughput function determination. Science, 2000. 289(5485): p. 1760-1763. 46. Hoa, X.D., A.G. Kirk, and M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosensors & Bioelectronics, 2007. 23(2): p. 151-160. 47. Ebbesen, T.W., et al., Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998. 391(6668): p. 667-669. 48. Lezec, H.J., et al., Beaming light from a subwavelength aperture. Science, 2002. 297(5582): p. 820-822. 49. Boozer, C., et al., DNA directed protein immobilization on mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors. Analytical Chemistry, 2004. 76(23): p. 6967-6972. 69 50. Rindzevicius, T., et al., Long-range refractive index sensing using plasmonic nanostructures. Journal of Physical Chemistry C, 2007. 111(32): p. 11806-11810. 51. Chou, S.Y., Krauss, P. R. and Renstrom, P. J., Appl. Phys. Lett., 67, 3114 1995. 52. 蔡宏營, 奈米轉印技術介紹, 工研院機械所奈米工程技術部專欄. 2004. 53. Willson, C.G., et al., Proc. SPIE, 3676(I): 379, 1999. 54. Lin, H.-Y., Direct Detection of C-reactive Proteins in Human Serum Using Surface Plasmon Resonance Biosensing 2006, 06, 15. 55. Wood, R.W., On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine, 1902. 4(19-24): p. 396-402. 56. Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surface, Journal of the Optical Society of America. 1941 57. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Physical Review B, Vol. 73, pp. 153405, (2006). 58. A Moreau, C Lafarge, N Laurent, K Edee and G Granet, “Enhanced transmission of slit arrays in an extremely thin metallic film,” J. Opt. A: Pure Appl. Opt., Vol. 9, pp. 165-169, (2007). 59. Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Physical Review Letters, Vol. 88, pp. 057403, (2002). 60. P. Lalanne, J.C. Rodier and J.P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A: Pure Appl. Opt., Vol. 7, pp. 422–426, (2005). 61. A. Hessel and A.A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt., Vol. 4, pp.1275-1297, (1965). 62. H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. Hooft, D. Lenstra and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett., Vol. 94, pp. 053901, (2005). 63. K.M. Chae, H.H. Lee, S.Y. Yim and S.H. Park, “ Evolution of electromagnetic interference through nano-metallic double-slit, ” Opt. Express, Vol. 12, pp. 2870-2879, (2004). 64. K. L. Lee, C. W. Lee and P. K. Wei, “Sensitive detection of nanoparticles using metallic nanoslit arrays,” Applied Physics Letters, Vol. 90, pp.233119, (2007).
|