跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳培文
研究生(外文):Pei-Wen Chen
論文名稱:大面積金屬奈米結構之製造及其在微陣列晶片上之應用
論文名稱(外文):Fabrication of Large-Area Metallic Nanostructures and Its Applications for Microarray Chips.
指導教授:魏培坤林資榕
指導教授(外文):Pei-Kuen WeiTzy-Rong Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:72
中文關鍵詞:奈米狹縫微陣列表面電漿子共振奈米壓印
外文關鍵詞:Nano slitMicroarraySurface Plasmon ResonanceNanoimprint
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
科技日新月異的今日,消費性產品都以輕薄短小為著稱,而近來熱門的科學研究為如何把生物檢測產品微小化、方便化與便於整合入個人行動設備中。吾人所研究的題目即是利用金奈米狹縫結構激發之表面電漿子共振,對環境折射率改變極為靈敏的特性,並結合奈米壓印技術,開發出的大面積微陣列生物檢測晶片。
本研究探討了奈米壓印技術對於微陣列晶片的製程方法與最佳參數,還探討了在特定波長範圍之表面電漿子共振受到金奈米狹縫結構上的改變對於折射率靈敏度的影響,研究中得知金奈米狹縫寬度愈小,愈能提升偵測靈敏度,在吾人的量測系統下,週期500nm、金膜厚度130nm的狹縫結構在水中量測擁有最高的光強靈敏度,故後續再研究更狹窄之金奈米狹縫之製作與生物量測,且運用奈米壓印技術所製作出的金膜比運用乾蝕刻技術擁有更好的表面平整度,其非常適合表面電漿子的傳播與共振。在吾人的實驗中,已成功製造出檢測極限為1.81×10-5 RIU,以PC膜為基材之金微陣列晶片。
並以此晶片做生物量測,其量測方式為使用單波長光照射晶片,當晶片上產生生物反應時,其環境折射率發生改變,同時造成穿透頻譜的位移而影響光強度,接著分析光強度隨時間的改變而可得到即時的生物反應資訊,吾人運用的DNA雜交反應來測試此微陣列晶片,兩者皆有相當明顯的變化,往後將朝著量測蛋白質的交互作用反應與降低生物樣品濃度,測試此晶片的生物檢測極限。而本晶片最宗目的,還是以能量產並商業化作為導向。

Nowadays, technology has been changing rapidly. Consumer products are outstanding by its thin and small feature. Recently, how to miniaturized, simplify a bio-detecting product and made it easy to integrating with personal mobile device have become a popular science research. The research we’ve done is to exciting surface Plasmon resonant by using gold nano-slit structure which is very sensitive in changes of refractive index. Also, we combined nano-imprint technology to develop large area bio-sensing microarray chips.
This research investigated the fabrication process and the optimal sensing condition for microarray chip made by nano-imprint technology, and the influence on sensitivity of refractive index by surface Plasmon resonant when changing the structure of gold nano-slit in specific wavelength range. Under our measurement facilities, the nano-slit structures of period at 500nm and gold film thickness at 130nm have the highest bulk intensity sensitivity in water environment. As the result, the narrower gold nana-slit is, the higher detecting sensitivity is, so we keep studying on fabricating more narrow gold nano-slit and bio-sensing. The gold film fabricated by nano-imprint technology has better surface roughness than using dry etching technology, and it is appropriate for the propagating and the resonating of surface plasma. In my research, it successfully fabricated a PC film-based gold microarray chip, which detection limit reaches 1.81×10-5 RIU.
By using this chip for bio-sensing, the measurement method is to illuminate the chip by single wavelength. When it generated bio-reaction on the chip, the refractive index changed. Meanwhile, it brings about the shift of transmission spectrum which affects the intensity of light. By analyzing the intensity changes over time, we can get the real-time information of bio-reactions. We employed DNA hybridization and protein reaction to test this microarray chip. Both of two have quite obvious changes. In the future, reducing the concentration of bio-sample, and testing the bio-detection limit of this chip is our goal.

摘要 I
ABSTRACT II
目 次 IV
圖 次 VI
表  次 X
第一章 緒論 1
第一節 前言 1
第二節 研究背景 3
第三節 研究動機與目的 6
第四節 文獻回顧 7
1- 4.1 表面電漿子共振作用在生物感測器之發展 7
1- 4.2 奈米壓印技術發展[52] 8
1- 4.3 表面電漿共振生物感測器之量測方法 10
第五節 論文架構 13
第二章 理論與模擬 14
第一節 簡介表面電漿子 14
第二節 表面電漿子原理 15
第三節 狹縫之表面電漿子激發與共振 21
第三章 製程與量測系統 25
第一節 奈米狹縫結構之母模製作 25
第二節 金屬奈米狹縫結構之圖形轉印 29
第三節 量測系統架構 34
3- 3.1 TM偏極化光穿透光譜量測系統 34
3- 3.2 微流道系統製作 35
3- 3.3 DNA微陣列(Microarray)製作 36
3- 3.4 光強度即時量測系統 37
第四章 大面積金奈米狹縫結構之特性 39
第一節 奈米壓印壓力的影響 39
第二節 金狹縫結構上的影響 44
4-2.1 週期上的影響 44
4-2.2 狹縫寬度上的影響 47
4-2.3 金膜厚度上的影響 49
第三節 奈米壓印樣品之均勻性與重複性 51
第四節 奈米壓印樣品之表面平整度 53
第五章 大面積金奈米狹縫結構之應用 56
第一節 金奈米狹縫結構對環境折射率的靈敏度分析 56
5- 1.1 計算分析 56
5- 1.2 實驗分析 58
第二節 大面積金奈米狹縫結構之生物檢測應用 61
5- 2.1 DNA微陣列檢測 61
第六章 總結與未來展望 64
參考文獻 66


1. Rowe-Taitt, C.A., et al., Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. Biosensors & Bioelectronics, 2000. 15(11-12): p. 579-589.
2. Cowan, J.J., R.H. Ritchie, and E.T. Arakawa, SURFACE PLASMON RESONANCE EFFECT IN GRATING DIFFRACTION. Bulletin of the American Physical Society, 1968. 13(11): p. 1413-&.
3. Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B-Chemical, 1999. 54(1-2): p. 3-15.
4. Piehler, J., A. Brecht, and G. Gauglitz, Affinity detection of low molecular weight analytes. Analytical Chemistry, 1996. 68(1): p. 139-143.
5. Goddard, N.J., D. Pollardknight, and C.H. Maule. REAL-TIME BIOMOLECULAR INTERACTION ANALYSIS USING THE RESONANT MIRROR SENSOR. 1994: Royal Soc Chemistry.
6. Clerc, D. and W. Lukosz. INTEGRATED OPTICAL OUTPUT GRATING COUPLER AS BIOCHEMICAL SENSOR. 1994: Elsevier Science Sa Lausanne.
7. G Boisde, A.H., Chemical and biochemical sensing with optical fibers and waveguides, Artech House, . 1996
8. P. K. Wei and H. L. Chou, “Optical near field in nanometallic slits,” Optics Express, Vol. 10, pp. 1418-1424,(2002).
9. S. Collin. F. Pardo, R. Teissier and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Physical Review B, Vol. 63, pp. 033107, (2001).
10. A Moreau, C Lafarge, N Laurent, K Edee and G Granet, “Enhanced transmission of slit arrays in an extremely thin metallic film,” J. Opt. A: Pure Appl. Opt., Vol. 9, pp. 165-169, (2007).
11. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Physical Review Letters, Vol. 86, pp. 5601-5603, (2001).
12. Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Physical Review Letters, Vol. 88, pp. 057403, (2002).
13. K. L. Lee,W. S. Wanga and P. K.Wei,“Sensitive label-free biosensors by using gap plasmons in gold nanoslits,” Biosensors and Bioelectronics, Vol. 24, p. 210-215, (2008).
14. R. L. Rich and D.G. Myszka, “Survey of the year 2004 commercial optical biosensor literature,” J Mol. Recognit., Vol. 18, pp. 431-478, (2005).
15. [21] D. R. Shankaran, K.V. Gobi and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B: Chem., Vol. 121, pp. 158-177, (2007).
16. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., Vol. 377, pp. 528-539, (2003).
17. J. Janata, “Principles of chemical sensors,” Plenum Press, (1989).
18. C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens Bioelectron, Vol. 15, pp. 579-589, (2000).
19. J. Piehler, A. Brecht and G. Gauglitz, “Affinity detection of low molecular weight analytes,” Anal Chem, Vol. 68, pp. 139-143, (1996).
20. D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens Actuators B, Vol. 19, pp. 581-586, (1994).
21. R. Cush , J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens Bioelectron, Vol. 8, pp. 347-353, (1993).
22. G. Jin, P. Tengvall, I. Lundström and H. Arwin, “A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions,” Analytical Biochemistry, Vol. 232, pp. 69-72, (1995).
23. G. Boisde and A. Harmer, “Chemical and Biochemical Sensing withOptical Fibers and waveguides”, Artech House, (1996).
24. C. A. Rowe-Taitt and F. S. Ligler, “Evanescent wave fiber optic Biosensors,” in F. S. Ligler and C.A. Rowe-Taitt, eds., “Optical Biosensors: Present and Future,” Elsevier, pp. 57-94, (2002).
25. J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens Actuators B, Vol. 54, pp. 3-15, (1999).
26. R. H. Ritchie, E. T. Arakawa, J. J. Cowan and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett., Vol. 21, pp.1530-1533, (1968).
27. H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer-Verlag, (1988).
28. B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators, Vol. 4, pp. 299-304, (1983).
29. M. Schena, D. Shalon, R. W. Davis and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, Vol. 270, pp. 467-470, (1995).
30. M. B. Gavin and L. S. Stuart, “Printing proteins as microarrays for high-throughput function determination,” Science, Vol. 289, pp. 1760-1763, (2000).
31. X. D. Hoa, A. G. Kirk and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens Bioelectron, Vol. 23, pp. 151-160, (2007).
32. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, Vol. 391, pp.667-669, (1998).
33. S. Kawata, “Near-Field Optics and Surface Plasmon Polaritons,” Springer, (2001).
34. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science, Vol. 297, pp. 820-822, (2002).
35. A. G. Brolo, R. Gordon, B. Leathem and K. L. Kavanagh, “Surface Plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir, Vol. 20, pp. 4813-4815, (2004).
36. L. Pang, G. M. Hwang, B. Slutsky and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett., Vol. 91, pp. 123112, (2007).
37. C. Genet and T.W. Ebbesen, “Light in tiny holes,” Nature, Vol. 445, pp. 39-46, (2007).
38. S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science, Vol. 272, pp. 85-87, (1996).
39. H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B, Vol. 26, pp. 458-480, (2008).
40. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Applied Physics Letters, Vol. 84, pp.5299-5301, (2004).
41. F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim and J. A. Rogers, “Polymer Imprint Lithography with Molecular-Scale Resolution,” Nano Letters, Vol. 4, pp. 2467-2471, (2004).
42. P. Nagpal, N. C. Lindquist, S. H. Oh and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science, Vol. 325, pp. 594-597, (2009).
43. B Liedberg, C.N., I Lundstrom, Surface plasmon resonance for gas detection and biosensing, Sens. Actuators. 1983.
44. Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003. 377(3): p. 528-539.
45. MacBeath, G. and S.L. Schreiber, Printing proteins as microarrays for high-throughput function determination. Science, 2000. 289(5485): p. 1760-1763.
46. Hoa, X.D., A.G. Kirk, and M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosensors & Bioelectronics, 2007. 23(2): p. 151-160.
47. Ebbesen, T.W., et al., Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998. 391(6668): p. 667-669.
48. Lezec, H.J., et al., Beaming light from a subwavelength aperture. Science, 2002. 297(5582): p. 820-822.
49. Boozer, C., et al., DNA directed protein immobilization on mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors. Analytical Chemistry, 2004. 76(23): p. 6967-6972. 69
50. Rindzevicius, T., et al., Long-range refractive index sensing using plasmonic nanostructures. Journal of Physical Chemistry C, 2007. 111(32): p. 11806-11810.
51. Chou, S.Y., Krauss, P. R. and Renstrom, P. J., Appl. Phys. Lett., 67, 3114 1995.
52. 蔡宏營, 奈米轉印技術介紹, 工研院機械所奈米工程技術部專欄. 2004.
53. Willson, C.G., et al., Proc. SPIE, 3676(I): 379, 1999.
54. Lin, H.-Y., Direct Detection of C-reactive Proteins in Human Serum Using Surface Plasmon Resonance Biosensing 2006, 06, 15.
55. Wood, R.W., On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine, 1902. 4(19-24): p. 396-402.
56. Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surface, Journal of the Optical Society of America. 1941
57. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Physical Review B, Vol. 73, pp. 153405, (2006).
58. A Moreau, C Lafarge, N Laurent, K Edee and G Granet, “Enhanced transmission of slit arrays in an extremely thin metallic film,” J. Opt. A: Pure Appl. Opt., Vol. 9, pp. 165-169, (2007).
59. Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Physical Review Letters, Vol. 88, pp. 057403, (2002).
60. P. Lalanne, J.C. Rodier and J.P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A: Pure Appl. Opt., Vol. 7, pp. 422–426, (2005).
61. A. Hessel and A.A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt., Vol. 4, pp.1275-1297, (1965).
62. H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. Hooft, D. Lenstra and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett., Vol. 94, pp. 053901, (2005).
63. K.M. Chae, H.H. Lee, S.Y. Yim and S.H. Park, “ Evolution of electromagnetic interference through nano-metallic double-slit, ” Opt. Express, Vol. 12, pp. 2870-2879, (2004).
64. K. L. Lee, C. W. Lee and P. K. Wei, “Sensitive detection of nanoparticles using metallic nanoslit arrays,” Applied Physics Letters, Vol. 90, pp.233119, (2007).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top