跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/16 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游智雄
研究生(外文):Chih-hsiung Yu
論文名稱:利用Z-掃描技術研究PLZT之非線性光學特性
論文名稱(外文):Optical nonlinear properties of PLZT investigated by Z-scan technique
指導教授:蔡宗儒蔡宗儒引用關係
指導教授(外文):Tsong-Ru Tsai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:81
中文關鍵詞:Z掃描lanthanum-modified lead zirconate titanate非線性折射率三階磁化率外加電場
外文關鍵詞:Z-scanPLZTnonlinear refractive indexthird-order nonlinear susceptibilityapplied electric field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
我們以穿透式閉孔徑飛秒 Z-掃描實驗技術研究壓電材料PLZT 陶瓷的非線性折射率。雷射光源是鈦-藍寶石雷射,脈衝寬度約為100飛秒,波長為790nm,重覆率10kHz,我們得到PLZT 的非線性折射率n2為(3.1±0.6)×10-8 esu,計算其三階非線性磁化率χ(3)為(9±1.8)×10-9 esu。當加直流電場於PLZT 時,觀察到非線性折射率n2隨著外加電場增強而變大,當電場強度由0 增加到9.5 kV/cm 時,非線性折射率n2 由3.42×10-8 變為4.32×10-8 esu,提升了26%。我們猜測非線性折射率隨著外加電場增強而變大的原因是外加電場致使材料的排列變整齊,因此材料的非線性折射率變大。
The nonlinear optical properties of lanthanum-modified lead
zirconate titanate (Pb0.91La0.09)(Zr0.65Ti0.35)O3 (PLZT 9/65/35) ceramic were investigated using the Z-scan technique with femtosecond laser pulses at 790 nm. The nonlinear refractive index n2 and the real part of
the third-order nonlinear susceptibility χ(3) of PLZT were
(3.1± 0.6) ×10-8 esu and (9±1.8) ×10-9 esu, respectively. In addition,the nonlinear refractive index n2 was increased with increasing the applied DC electric field. The electric field enhanced n2 could be related to an increase in domain alignment in a direction parallel to the applied electric field.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 簡介 1
參考文獻 5
第二章 理論基礎 7
2.1 Z掃描技術(Z-scan technology) 7
2.1.1 無孔徑Z-掃描技術 11
2.1.2 有孔徑Z-掃描技術 12
2.2 非線性光學理論 14
2.2.1 光在非線性材料內的特性 14
2.2.2 線性吸收與折射 19
2.2.3 非線性吸收與折射( ) 19
2.2.4 總結 20
參考文獻 21
第三章 樣品與實驗架構 22
3.1 樣品結構 22
3.1.1 樣品介紹 24
3.1.2 外加電場對PLZT的影響 27
3-2 Z-scan實驗系統架構 28
3.3自相關干涉儀 30
3.4 雷射系統與系統元件介紹 31
3.4.1 二極體激發連續波雷射 32
3.4.2 鎖模鈦藍寶石雷射 34
參考文獻 36
第四章 實驗結果與討論 37
4.1 線性吸收係數與線性折射率的量測 37
4.1.1線性吸收係數 37
4.1.2線性折射率 37
4.2 波長790nm的非線性折射率量測 40
4.2 790nm外加直流電場的非線性折射率量測 49
γ2為加電場後的γ值,γ1為沒電場的γ值 68
參考文獻 70
第五章 結論 72

1. E. Tokumitsu, R. Nakamura, and H. Ishiwara, “Nonvolatile Memory Operations of Metal-Ferroelectric-Insulator-Semiconductor (MFIS)FET’s Using PLZT/STO/Si(100) Structures”, IEEE Electron Device Lett. 18, 160-162 (1997).
2. G. M. Rao and S. B. Krupanidhi, “Pulsed excimer laser ablation of (Pb,La)TiO, thin films for dynamic random access memory devices”,
Appl. Phys. Lett. 64, 1591-1593 (1994).
3. F. Wang and G. H. haertling, “ Birefringent bistability in (Pb,La)(Zr,Ti)03 thin films with a ferroelectricsemiconductor
Interface”, Appl. Phys. Lett. 63, 1730-1732 (1993).
4. M. Ozolinsh , P. Panlins , A. Viestures , M. Kundzins, K. Kundzins and A. Krumins , “PLZT Laser Beam modulator”, Ferroelectric 128, 73-78 (1992).
5. A. Yu and A. S. Siddiqui, “Optical modulators using fibreoptic Sagnac interferometers”, IEEE Proc. Optoelectron. 141, 1-7 (1994).
6. H. Adachi and K. Wasa, “Sputtering Preparation of Ferroelectric PLZT Thin Films and Their Optical Applications”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 645-655 (1991).
7. G. H. Haertling and C .E. Land , “Hot Pressed (Pb, La)(Zr, Ti)O3 Ferroelectric Ceramics for Electrooptic Application”, J. Am. Ceram. Soc 54, 1-11 (1971).
8. R. Brooks and D. K. McCarthy, “Production scale PLZT powder preparation Ferroelectrics”, Ferroelectrics 27, 179-182 (1980).
9. Q. Y. Jiang and L. E. Cross, “Effects of porosity on electric fatigue behavior in PLZT and PZT ferroelectric ceramics”, J. Material Sci. 28, 4536-4543 (1993).
10. X. Dai, A. DiGiovanni and D. Viehland, “Dielectric properties of tetragonal lanthanum modified lead zirconate titanate ceramics”, J. Appl. Phys. 74, 3399-3405 (1993).
11. H. Adachi , T. Mitsuyu , O. Yamazaki and K. Wasa, “Ferroelectrics (Pb, La)(Zr, Ti)O3 epitaxial thin film on sapphire grown by rf-planar magnetron sputtering”, J. Appl. Phys. 60, 736-741 (1986).
12. K. Wasa , H. Adachi and M. Kitabatake, “Basic deposition process and ferroelectric properties of sputtered PLZT thin films Ferroelectrics”, Ferroelectrics 151, 1-10 (1994).
13. W. Biegel, R. Klarmann, B. Stritzker, B. Schey and M. Kuhn, “Pulsed
laser deposition and characterization of perovskite thin films on various substrates”, Appl. Surf. Sci. 168, 227-233 (2000).
14. Z. G. Hu, F. W. Shi, T. Lin, Z. M. Huang, G. S. Wang, Y. N. Wu, and J. H. Chu, “ Infrared spectroscopic ellipsometry of (Pb, La)(Zr, Ti)O3 thin films on platinized silicon”, Phys. Lett. A 320, 478-486 (2004).
15. X. G. Tang, A. L. Ding, Y. Ye and W. X. Chen, “Preparation and characterization of highly (1 1 1)-oriented (Pb,La)(Zr,Ti)O3 thin films by sol–gel processing”, Thin Solid Films 423, 13-17 (2003).
16. K. Tominaga, A. Shirayanagi, T. Takagi and M. Okada, “Switching and Fatigue Characteristics of (Pb, La)(Zr, Ti)O3 Thin Films by Metalorganic Chemical Vapor Deposition”, J. J. Appl. Phys. 32, 4082-4085 (1993).
17. H. Nakashima, S. Hazami, T. Kamiya, K. Tominaga and M. Kada, “Electrical Properties for Capacitors of Dynamic Random Access Memory on (Pb, La)(Zr, Ti)O3 Thin Films by Metalorganic Chemical Vapor Deposition”, J. J. Appl. Phys. 33, 5139-5142 (1994).
18. C. Bao, and J. C. Diels, “Ultrafast nonlinear response in PLZT thin films with ultrashort pulses”, Opt. Lett. 20, 2186-2188 (1995).
19. G. H. Jin, B. Nemet, Y. L. Lu, C. Hsu, and M. C. Golomb, “Degenerate four-wave mixing in (Pb, La) (Zr,Ti)O3 polycrystalline film fabricated by metalorganic chemical-liquid deposition” , Appl. Phys. Lett. 74, 3116-3118 (1999).
20. W. F. Zhang, Y. B. Huang, and M. S. Zhang, “Optical properties of ferroelectric (Pb, La)(Zr, Ti) O3 thin films grown by pulsed laser deposition”, Appl. Surf. Sci. 158,185-189 (2000).
21. W. J. Leng, C. R. Yang, and H. J. H. Zhang, “Large third-order optical nonlinearity in (Pb,La)(Zr,Ti)O3 ferroelectric thin film”, J. Appl. Phys. 100, 126101~126101-3 (2006).
22. W. Leng, C. Yang, and H. Ji, “Linear and nonlinear optical properties of (Pb,La)(Zr,Ti)O3 ferroelectric thin films grown by radio-frequency magnetron sputtering”, J. Phys. D: Appl. Phys. 40, 1206-1210 (2007).
23. D. Ambika, V. Kumar. and R. Philip, “Tunability of third order nonlinear absorption in (Pb,La)(Zr,Ti)O3 thin films”, Appl. Phys. Lett. 98, 011903~011903-3 (2011).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top