(3.238.130.97) 您好!臺灣時間:2021/05/18 09:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王政賢
研究生(外文):Wang, Cheng-Hsien
論文名稱:雙腳位置對坐到走動作表現之影響
論文名稱(外文):The Influence of Foot Placement on Motor Performance during Sit-to-Walk Movement
指導教授:翁梓林翁梓林引用關係
指導教授(外文):Wong, Tzu-Lin
口試委員:湯文慈蔡葉榮
口試委員(外文):Tang, Wen-TzuTsai, Yeh-Jung
口試日期:2011-06-23
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:體育學系碩士班
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:119
中文關鍵詞:坐到站步態起始肌肉活化
外文關鍵詞:Sit-to-StandGait InitiationMuscle Activation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
目的:探討雙腳平行垂直、平行前置10公分、平行後擺10公分對坐到走動作之運動學、動力學及下肢肌電圖參數的影響。方法:以8名無下肢傷痛病史之健康成年男性(年齡19.38±0.52歲、身高176.63±6.8公分、體重70.51±9.03公斤)為研究對象。使用一台Mega speed 30k高速攝影機(100Hz) ,並結合AMTI測力板 (1000Hz)兩台與Biovision肌電儀(1000Hz),採同步方法擷取受試者坐到走動作之資料。影片以Kwon3D動作分析軟體處理取得運動學參數;測力板原始訊號透過DasyLab 6.0分析軟體,經模組設定取到垂直分力、前後分力,以體重倍率(Body Weight, B.W)表示,另以壓力中心公式求得二維座標;肌電訊號經由DASYLab 6.0軟體模組設定,取得平均肌電振幅,並以最大自主收縮(MVC)之平均值進行標準化。資料使用SPSS for Windows 12.0套裝軟體以重複量數單因子變異數分析進行統計分析(α =.05)。結果:一、伸展期與站立期時間及動作時間均達統計上顯著差異(p<.05);二、屈曲期軀幹前傾角度、角速度與伸展期下肢關節伸展時間均達統計上顯著差異(p<.05);三、身體質心水平、垂直位移與各分期速度變化均達統計上顯著差異(p<.05)(伸展期水平速度除外);四、跨步時間、距離及速度均達統計上顯著差異(p<.05);五、起身與步態動作之前後分力、垂直分力均達統計上顯著差異(p<.05);六、壓力中心之前後、左右偏移量均達統計上顯著差異(p<.05);七、屈曲期之股直肌、脛骨前肌與腓腸肌平均肌電振幅均達統計上顯著差異(p<.05),伸展期之股直肌、脛骨前肌與股二頭肌平均肌電振幅均達統計上顯著差異(p<.05),而站立期之下肢肌群平均肌電振幅均未達統計上顯著差異(p>.05)。結論與建議:雙腳垂直,甚至向前10公分的起始位置,將造成坐到走動作的困難、身體欠缺穩定以及容易因動作控制不當而導致受傷;相對來說,讓雙腳從垂直位置向身體靠近,使身體容易移動到雙腳所構成的支撐基底上,呈現出較不費力、穩定且具有流暢完成坐到走動作轉換的表現,不失為一種執行坐到走動作良好的動作策略,而座椅設計則應有足夠的空間來讓雙腳靠近身體以執行坐到走的動作。
Purposes: This study investigated the influences of three feet positions, parallel feet perpendicular to the ground, parallel feet 10 cm in front and in back of the feet perpendicular to the ground, on the kinematics, dynamics, and lower limb EMG parameters during sit-to-walk movement. Method: This study selected 8 healthy adult male who had never experienced lower limb pain as the subjects (age: 19.38±0.52 years old; height: 176.63±6.8 cm; weight: 70.51±9.03 kg). A Mega speed 30k high-speed camera (100Hz), combined with two AMTI force plates (1000Hz) and Biovision EMG (1000Hz) were synchronized to collect the data of subjects’ motion. Kwon3D motion analysis software was used to process the video and to quantify the kinematic parameters. DasyLab 6.0 analysis software was used to process the original signals of forceplate, and the vertical force and anterior-posterior force were obtained after filtering and scaling. The forces were standardized and were indicated in body weight (B.W.). Moreover, center of pressure formula was used to obtain the 2-D coordinates. The EMG signals were processed by the DASYLab 6.0 software to obtain the average EMG amplitude. The EMG amplitude was standardized based on the mean of maximum voluntary contraction (MVC). SPSS for Windows 12.0 package software and statistical method one-way ANOVA were used to conduct statistical analyses on the data (α =. 05). Results: Results: The influences of different feet positions were as follows: 1) there was a significant statistical difference in time of extension phase, stance phase and movement (p<.05); 2) there were significant statistical differences in torso forward angle, angular velocity during flexion phase, and lower limb stretching time during extension phase(p<.05); 3) there were significant statistical differences in horizontal, vertical displacement of body mass, and velocity change during each phase (p<.05) (expect for the horizontal velocity of extension phase); 4) there were significant statistical differences in step time, distance, and velocity (p<.05); 5) there were significant statistical differences in the anterior-posterior force and the vertical force during standing up motion and gait motion (p<.05); 6) there were significant statistical differences in the offset of the anterior-posterior component and the horizontal component of the center of pressure (p<.05); 7) there were significant statistical differences in the average EMG amplitude of rectus femoris, tibialis anterior, and gastrocnemius during flexion phase (p<.05), there were significant statistical differences in the average EMG amplitude of rectus femoris, tibialis anterior, and biceps femoris during extension phase (p<.05), and there was no significant statistical difference in the average EMG amplitude of lower limb muscles during stance phase(p>.05). Conclusions and Suggestions: The initial feet positions, parallel feet perpendicular to ground and 10 cm in from of the feet perpendicular to ground, will results in difficulties, lack of physical stability, and inadequate action control, which may further lead to body damages during sit-to-walk movement. On the contrary, making both feet get close to body from vertical position enables body easily move to the base of support formed by feet. It is more labor-saving, stable, and smooth to complete the transition of motion during sit-to-walk movement by using such a method. Therefore, the design of chairs should provide feet with sufficient space to get close to body and implement the actions during sit-to-walk movement.
中文摘要i
英文摘要iii
目次v
表次vii
圖次viii
第一章 緒論01
第一節 問題背景01
第二節 研究目的06
第三節 研究範圍與限制07
第四節 名詞操作性定義08
第二章 文獻探討11
第一節 坐到站動作研究之相關文獻11
第二節 雙腳位置對坐到站動作影響之相關文獻19
第三節 步態起始動作研究之相關文獻27
第四節 坐到走動作研究之相關文獻32
第五節 文獻總結42
第三章 研究方法與步驟43
第一節 研究架構43
第二節 實驗對象44
第三節 實驗時間與地點44
第四節 實驗儀器與設備44
第五節 實驗場地與儀器架設48
第六節 實驗方法與步驟50
第七節 資料收集與處理58
第八節 統計方法61
第四章 結果63
第一節 不同雙腳擺放位置對坐到走運動學參數之影響63
第二節 不同雙腳擺放位置對坐到走動力學參數之影響76
第三節 不同雙腳擺放位置對坐到走下肢肌電圖參數之影響82
第四節 運動學參數、動力學參數及下肢肌電訊號同步分析87
第五章 討論93
第一節 不同雙腳擺放位置坐到走之運動學特性分析93
第二節 不同雙腳擺放位置坐到走之動力學特性分析101
第三節 不同雙腳擺放位置坐到走之下肢肌肉活化程度分析105
第四節 綜合討論109
第六章 結論與建議111
第一節 結論111
第二節 建議111
參考文獻113
附錄119
附錄一 受試者須知及同意書119
Breniere, Y., Do, M.C., & Sanchez, J. (1981). A biomechanical study of the gait initiation process. J Biophys Med Nucl, 5(4), 197-205.
Breniere, Y., & Do, M. C. (1986). When and how does steady state gait movement induced from upright posture begin? Journal of Biomechanics, 19(12), 1035-1040.
Breniere, Y., Do, M. C., & Bouisset, S. (1987). Are dynamic phenomena prior to stepping essential to walking? Journal of Motor Behavior, 19, 62-76.
Buckley, T. A., Pitsikoulis, C., & Hass, C. J. (2008). Dynamic postural stability during sit-to-walk transitions in Parkinson Disease Patients. Movement Disorder, 23,
1274-1280.
Buckley, T., Pitsikoulis, C., Barthelemy, E., & Hass C. J. (2009). Age impairs sit-to-walk motor performance. Journal of Biomechanics, 42(14), 2318-2322.
Burdett, R.G., Habasevich, R., Pisciotta, J., & Simon, S. R. (1985). Biomechanical comparison of rising from two types of chairs. Physical Therapy, 65(8), 1177–1183.
Carlsoo, S., & Molbech, S. (1966). The functions of certain two-joint muscles in a closed muscular chain. Acta Morphol Neer-Scand, 6, 377-386.
Carr, J., & Shepherd, R. (1998). Neurological rehabilitation: optimizing motor performance. London: Butterworth Heinemann.
Crenna, P., & Frigo, C. (1991). A motor programme for the initiation of forward-oriented movements in humans. Journal of Physiology, 437, 635-653.
Dehail, P., Bestaven, E., Muller, F., Mallet, A., Robert, B., Bourdel-Marchasson, I., &
Petit, J. (2007). Kinematic and electromyographic analysis of rising from a chair
during a “Sit-to-Walk” task in elderly subjects: Role of strength. Clinical biomechanics, 22(10), 1096-1103.
Dion, L., Malouin, F., McFadyen, B. J., & Richards, C. L. (2003). Assessing mobility
and locomotor coordination after stroke with the Rise-to-Walk Task. Neurorehabil Neural Repair, 17(2), 83-92.
Doorenbosch, C. A. M., Harlaar, J., Roebroeck, M. E., & Lankhorst, G. J. (1994). Two
strategies of transferring from sit-to-stand; the activation of monoarticular and biarticular muscles. Journal of Biomechanics, 27(11), 1299-1307.
Engardt, M., & Olsson, E. (1992). Body weight-bearing while rising and sitting down in
patients with stroke. Scandinavian Journal of Rehabilitation Medicine, 24(2), 67-74.
Elble, R. J., Moody, C., Leffler, K., & Sinha, R. (1994). The initiation of normal walking. Movement Disorders, 9(2), 139-146.
Fleckenstein, S. J., Kirby, R. L., & MacLeod, D. A. (1988). Effect of limited knee-flexion range on peak hip moments of force while transferring from sitting to standing. Journal of Biomechanics, 21(11), 915-918.
Frykberg, G. E., Aberg, A.C., Halvorsen, K., Borg, J., & Hirschfeld, H. (2009). Temporal coordination of the sit-to-walk task in subjects with stroke and in controls. Archives of Physical Medicine and Rehabilitation, 90, 1009-1017.
Goulart, F. R., & Valls-Solé, J. (1999). Patterned electromyographic activity in the sit-to-stand movement. Clinical Neurophysiology, 110(9), 1634-1640.
Halliday, S. E., Winter, D. A., Frank, J. S., Patla, A. E., & Prince, F. (1998). The initiation of gait in young, elderly, and Parkinson’s disease subjects. Gait Posture,
8(1), 8-14.
Hughes, M., Weiner, D., Schenkman, M., Long, R., & Studenski, S. (1994). Chair rise
strategies in the elderly. Clinical Biomechanics, 9, 187-192.
Ikeda, E. R., Schenkman, M. L., & Riley, P. O. (1991). Influence of age on dynamic of
rising from a chair. Physical Therapy, 71(6), 473-481.
Janssen, W.G., Bussmann, H. B. J., & Stam, H. J. (2002). Determinants of the sit-to-stand movement: a review. Physical Therapy, 82, 866-879.
Jian, Y., Winter, D. A., Ishac, M. G., & Gilchrist, L. (1993). Trajectory of the body
COG and COP during initiation and termination of gait. Gait Posture, 1(1), 9-22.
Kawagoe, S., Tajima, N., & Chosa, E. (2000). Biomechanical analysis of effects of foot
placement with varying chair height on the motion of standing up. Journal of Orthopaedic Science, 5, 124-133.
Kerr, A., Durward, B., & Kerr, K. M. (2004). Defining phases for the sit-to-walk movement. Clinical Biomechanics, 19, 385-390.
Kerr, A., & Kerr, K. M. (2001). Differences in the initial propulsive force between sit to walk and sit to stand in healthy subjects. Physiotherapy, 87(2), 87.
Kerr, A., Kerr, K. M., & Durward, B. (2006). Hesitancy during the sit-to-walk movement. Gait Posture, 24(2[suppl.]), 262-264.
Kerr, A., & Kerr, K. M. (2002). Sit-to-stand and sit-to-walk.Physiotherapy,88(7), 437.
Kerr, A., Rafferty, D., Kerr, K. M., & Durward, B. (2007). Timing phases of the sit-to-walk movement: validity of a clinical test. Gait Posture, 26(1), 11-16.
Khemlani, M. M., Carr, J. H., & Crosbie, W. J. (1999). Muscle synergies and joint linkages in sit-to-stand under two initial foot positions. Clinical Biomechanics, 14,
236-246.
Kouta, M., Shikonda, K., & Kanemura, N. (2006). Sit-to-walk versus sit-to-stand or gait initiation: biomechanical analysis of young men. J. Phys. Ther. Sci., 19, 201-206.
Kouta, M., Shinkoda, S., & Eisemann Shimizu, M. (2007) Biomechanical analysis of the sit-to-walk series of motions frequently observed in daily living: effects of motion speed on elderly persons. J. Phys. Ther. Sci., 19, 267-271.
Kouta, M., & Shinkoda, K. (2008). Differences in biomechanical characteristics of sit-to-walk motion between younger and elderly males dwelling in the community. J. Phys. Ther. Sci., 20, 185-189.
Magnan, A., McFadyen, B. J., & St-Vincent, G. (1996). Modification of the sit-to-stand
task with the addition of gait initiation. Gait Posture , 4 ,232-241.
Mann, R. A., Hagy, J. L., White, V., & Liddell, D. (1979) .The initiation of gait. J Bone Joint Surg Am, 61, 232-239.
Mickelborough, J., vander Linden, M. L., Tallis, R. C., & Ennos, A. R. (2004). Muscle
activity during gait initiation in normal elderly people. Gait Posture, 19, 50-57.
Millington, P. J., Myklebust, B.M., & Shambes, G.M. (1992). Biomechanical analysis of
the sit-to-stand motion in elderly persons. Archives of Physical Medicine and Rehabilitation, 73 (7), 609-617.
Munton, J. S., Ellis, M. I., & Wright, V. (1984). Use of electromyography to study leg
muscle activity in patients with arthritis and in normal subject during rising from a
chair. Annals of Rheumatic Diseases, 43, 63-65.
Pai, Y.C., & Rogers, M.W. (1990). Control of body mass transfer as a function of speed
of ascent in sit-to-stand. Medicine & Science in Sports & Exercise, 22, 378-384.
Pai, Y. C., & Rogers, M.W. (1991). Speed variation and resultant joint torques during
sit-to-stand. Archives of Physical Medicine and Rehabilitation, 72(11), 881-885.
Polcyn, A. F., Lipsitz, L. A., Kerrigan, D. C., & Collins, J.J. (1998). Age-related changes in the initiation of gait: degradation of central mechanisms for momentum
generation. Archives of Physical Medicine and Rehabilitation, 79, 1582-1589.
Rodosky, M. W., Andriacchi, T. P., & Anderson, G. B. (1989). The influence of chair
height on lower limb mechanics during rising. Journal of Orthopaedic Research, 7,
266-271.
Roebroeck, M. E., Doorenbosch, C. A, & Harlaar, J. (1994). Biomechanics and muscular activity during sit-to-stand transfer. Clinical Biomechanics, 9, 235-244.
Scarborough, D. M., McGibbon, C. A., &Krebs, D. E. (2007). Chair rise strategies in
older adults with functional limitations. Journal of Rehabilitation Research & Development, 44(1), 33-41.
Schenkman, M., Berger, R. A., Riley, P. O., Mann, R. W., & Hodge, W. A. (1990). Whole-body movements during rising to standing from sitting. Physical Therapy,70 (10), 638-648.
Schenkman, M., Riley, P. O., & Pieper, C. (1996). Sit to stand from progressively lower seat heights- alterations in angular velocity. Clinical Biomechanics, 11(3), 153-158.
Seedhom, B. B., & Terayama, K. (1976). Knee forces during the activity of getting out of a chair with and without the aid of arms. Biomedical Engineering, 11, 278-282.
Shepherd, R. B., & Koh, H. P. (1996). Some biomechanical consequences of varying foot placement in sit-to-stand in young women. Scandinavian Journal of Rehabilitation Medicine, 28, 79-88.
Sibella, F., Galli, M., Romei, M., Montesano, A., & Crivellini, M. (2003). Biomechanical analysis of sit-to-stand movement in normal and obese subjects. Clinical Biomechanics, 18(8), 745-750.
Vander Linder, D. W., Brunt, D., & McCulloch, M. U. (1994). Variant and in variant
characteristics of the sit-to-stand task in healthy elderly adults. Archives of Physical Medicine and Rehabilitation, 75, 653-660.
Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait Posture , 3 ,193-214.
Yamada, T., & Demura, S. (2007). Influence of load burdens on lower limbs in each movement phase and the characteristics of sit-to-stand movement. Sport Science for Health, 2(1), 8-15.
Yoshida, K., Iwakura, H., & Inoue, F. (1983). Motion analysis in the movements of standing up from and sitting down on a chair. A comparison of normal and hemiparetic subjects and the differences of sex and age among the normals. Scandinavian Journal of Rehabilitation Medicine, 15(3), 133-140.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文