(44.192.66.171) 您好!臺灣時間:2021/05/17 23:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪鈴琪
研究生(外文):Hung,Ling-Chi
論文名稱:足內八與足外八對著地緩衝能力之影響
論文名稱(外文):The Effect of Toe-in And Toe-out Gait On Buffer Capacity At Landing
指導教授:翁梓林翁梓林引用關係
指導教授(外文):Wong,Tzu-lin
口試委員:陳億成蔡葉榮
口試日期:2011-06-20
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:體育學系碩士班
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:70
中文關鍵詞:足內八著地緩衝能力肌電圖
外文關鍵詞:toe-in gaitLandingBuffer capacityElectromyography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
目的:探討足內八、足外八及自然著地等三種不同著地角度,赤腳於60公分高度下著地,對下肢關節角度調節的機轉、地面反作用力與肌電訊號之影響。方法:以北市國小五年級女性學童,足內八、足外八及自然步態各5名(年齡11.2±0.4歲、身高145.3±7.2公分、體重39.8±8.5公斤 )為受試對象。以一部Mega speed 30k高速攝影機 (100Hz) 、一台AMTI測力板 (1000Hz) 和Biovision肌電儀器 (1000Hz) 以同步方法擷取人體著地動作。影片利用Kwon3D動作分析系統處理,經人體肢段參數 (BSP )建置、直接線性轉換 ( DLT ) 獲得運動學參數。測力板原始訊號透過DasyLab 6.0分析軟體,經濾波、模組 (電壓-力量) 校正得到原始三維反作用力,再經由積分運算取得衝量參數。原始肌電訊號經由DASYLab 6.0軟體分析,進行10~500HZ的band -pass濾波處理、10Hz低通濾波 (low pass) 與全波整流上翻後,經積分運算後,可得積分肌電值(iEMG),並除以積分區間之作用時間,得肌電訊號的平均肌電振幅,並以EMG最大自主性收縮值進行標準化處理( %MVC)。在統計方法上,採用統計軟體SPSS for windows 12.0版,以獨立樣本單因子變異數分析 (one-way ANOVA) 考驗,其顯著水準定為α=.05。結果:一、足內八及足外八組在重心最低時下肢髖、膝關節角度明顯大於自然著地組(p<.05);緩衝期下肢膝關節角位移、膝關節最大角速度、重心垂直位移及緩衝時間在足內八及足外八組皆明顯小於自然著地組(p<.05);且足內八組在緩衝期下肢髖關節角位移、髖關節最大角速度及軀幹前傾角度明顯小於自然著地組(p<.05)。二、足內八組在最大負荷率、垂直分力峰值及50 毫秒內的被動衝量明顯大於自然著地組(p<.05)。三、股直肌活化程度在足內八及足外八組明顯大於自然著地組(p<.05)。結論:不同的足部著地角度(足內八、足外八及自然著地)是影響著地動作的因子之一。足內八、足外八組是以較直立的僵直型態著地,因此在著地緩衝能力上,自然著地組較佳,比其他兩組運用較多軀幹、髖、膝關節的彎曲及位移和時間來進行緩衝,及徵召較少股直肌運動單位來穩定膝關節屈曲角度,即能夠有效減弱落地時對下肢所產生的巨大撞擊力量。建議在著地動作上,應注意落地後的足部角度,採以足尖向前的自然著地方式,避免因足內八或足外八而增加受傷的機率。

Abstract
Objctive: The aim of this research is to study the effects of different landing angles toe-in, toe-out, and neutral barefoot gait from the height of 60cm on the lower limb joints, ground reaction forces and EMG signals.Methods: 15 female fifth graders respectively with toe-in, toe-out, and neutral gait (five in each group) are selected from Taipei City to participate in this study.(age: 11.2±0.4 years old, height: 145.3±7.2 cm, weight: 39.8±8.5 kg). A Mega speed 30k high speed camera (100Hz), an AMTI force plate (1000Hz),and four Biovision EMG system (1000Hz) are used to synchronously capture kinematical , dynamics and lower limbs EMG parameters of landing. The film undergoes Kwon3D movement analysis and human limb sections of parameter organizational system and Direct Linear Transformation in order to possess the physical parameters. The primitive signal from the force plate is processed by DasyLab 6.0 software, low-pass filtering (10Hz) and calibrates modular to calculate the primitive three dimension counterforce, and then obtain the impulse value through integration analysis. The primitive signals of EMG is processed by DasyLab 6.0 software, band-pass filtering, low-pass filtering (10Hz) and full-wave rectification, also obtain the integration EMG through integration analysis. MVC is used to normalize signals of EMG. The resulting data undergoes one-way ANOVA via SPSS 12.0 statistics software. The level of significance for this experiment is set to α=.05.Results: 1.The angles of the hip and knee joints of the both the toe-in and toe-out gait groups at their lowest center of gravity are significantly greater than that of the neutral gait group. (p <.05). Knee joint angles displacement at buffer phase, the greatest angular velocities of knee joints, center of gravity vertical displacement, and buffering time are significantly smaller than that of the neutral landing group. The hip joint displacement at buffer phase, the greatest angular velocities of hip joint, and the forward inclination angle of the torso of the toe-in gait group are significantly smaller than that of the neutral landing. 2.The greater loading rate, the rate of peak vertical reaction force, and 50ms passive impulse of the toe-in gait group are greater than that of the neutral landing group. (p <.05). 3.The degrees of rectus femoris activation of the toe-in and toe-out gait groups are significantly greater than that of the neutral landing group. (p <.05).Conclusion: The angle of different landing position (toe-in, toe-out, and neutral landing gait) is one of the factors affecting the drop landing action. With regards to landing buffer capacity. The neutral gait group shows better performance than the toe-in group since the latter lands with a more erect stiffness. The neutral gait group engages more time and movement of the torso, hip, and knee joints for buffering than do the other two groups. By using less rectus femoris units to stabilizing the knee flexion of the joints, the tremendous friction produced while landing is therefore effectively reduced. In order to avoid injury caused by toe-in or toe-out gait, it is suggested that one takes the neutral landing position with the tip of the feet pointing forward.

目 次
中文摘要........................................................................................................i
英文摘要......................................................................................................iii
目次.............................................................................................................. v
表次............................................................................................................viii
圖次..............................................................................................................ix
第一章 緒論…………………………………………………………….01
第一節 問題背景…………………………………………………...01
第二節 研究目的…………………………………………………...05
第三節 研究範圍與限制…………………………………………...06
第四節 研究假定…………………………………………………...06
第五節 名詞操作性定義…………………………………………...07
第二章 文獻探討………………………………………………………...10
第一節 足部結構異常之相關文獻………………………………...11
第二節 足內八與足外八之相關文獻……………………………...14
第三節 著地動作之生物力學研究………………………………...17
第四節 著地動作之肌電相關文獻………………………………...23
第五節 文獻總結…………………………………………………...24
第三章 研究方法與步驟……………………………………………….25
第一節 實驗對象…………………………………………………...25
第二節 實驗時間與地點…………………………………………...26
第三節 研究架構…………………………………………………...26
第四節 實驗儀器與設備…………………………………………...27
第五節 實驗場地與儀器架設……………………………………...30
第六節 實驗方法與步驟…………………………………………...33
第七節 資料收集與處理…………………………………………...41
第八節 統計方法…………………………………………………...43
第四章 結果……………………………………………………………44
第一節 足內八與足外八對著地緩衝能力運動學參數之影響…..44
第二節 足內八與足外八對著地緩衝能力動力學參數之影響…..50
第三節 足內八與足外八對著地緩衝能力之下肢肌群肌電(EMG)
分析………………………………………………………...51
第四節 足內八與足外八對著地緩衝能力之特性分析…………...53
第五章 討論…………………………………………………………….56
第一節 足內八與足外八著地緩衝能力之運動學與動力學參數分
析…………………………………………………………...56
第二節 足內八與足外八著地緩衝能力之標準化積分肌電量參數
分析………………………………………………………….60
第三節 綜合討論…………………………………………………...62
第六章 結論與建議…………………………………………………….63
參考文獻………………………………………………………………….64
一、中文部分…………………………………………………………...64
二、英文部分…………………………………………………………...66
附錄一…………………………………………………………………….70

參考文獻
一、中文部分
王順正(1995)。跑者下肢運動傷害原因的探討。國民體育季刊, 24(1),88-96。
杜曉宁、趙曉哲、張欣(2008)。正常足與扁平足的足底壓力與步態特徵。中國組織工程研究與臨床康復,12(46),9058-9061。
周立偉、陳芬芬、羅瑞寬、楊佩瑜、孟乃欣、林千琳等(2009)。台中縣國小學童四種常見足部功能障礙之盛行率概況探討。中台灣醫誌,14(1),1-9。
陳文基(2003)。扁平足弓和正常足弓走與跑之生物力學研究。未出版之碩士論文,國立體育學院運動科學研究所,桃園縣。
陳雯惠(2003)。不同高度與姿勢的人體著地動作之生物力學分析。未出版碩士論文,國立體育學院,桃園縣。
陳峙存(2009)。性別差異著地於不同軟硬表面之生物力學分析。未出版碩士論文,國立臺北教育大學,臺北市。
陳五洲、陳協鴻與王素珍(2006)。我國役齡男子之足弓參數邏輯迴歸分析。大專體育學刊,8(1),213-228。
許太彥(1999)。國小學童不同高度赤腳著地之生物力學分析。未出版碩士論文,國立臺灣師範大學,臺北市。
許太彥(2003)。國小學童不同軟硬表面著地下肢勁度調節之機轉及其影響。未出版博士論文,國立臺灣師範大學,臺北市。
張英智、黃長福與趙國斌(1994)。三個不同高度著地動作的生物力學分析。體育學報,18,195-206。
黃靖閔(2005)。排球選手不同落地策略下肢動力學分析。未出版碩士論文,國立體育學院,桃園縣。
黃足生(2008)。國小學童赤足與穿鞋著地於不同軟硬表面之生物力學分析。未出版碩士論文,國立臺北教育大學,臺北市。
楊百嘉與簡金城(1991)。反轉矯正帶對於兒童內八字腳及外八字腳治療之結果。中華民國復健醫學會雜誌,19,53-59。
蔣至傑、王博民、駱榮欽與陳俊忠(2005)。足弓形態與下肢傷害之相關性。北體學報,13,179-187。
鍾祥賜、陳五洲與侯耀東(2005)。扁平足與正常足後足運動的差異研究。大專體育學刊,7(2),215-225。
鍾進燈、楊鎮嘉、邱靖華、林家弘與謝悅齡(2010)。正常年輕族群以足外八著
走會增加內側地面反作用力。台灣復健醫誌,38(2),65 - 73。




二、英文部分
Arendt, E., & Dick, R. (1995). Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. The American Journal of Sports Medicine, 23, 694-701.
Barrier, J., Kovacs, I., Racz, L., Tihanyi, J., DeVita, P., & Hortobagyi, T. (1997). Differential effects of toe versus heel landing on lower extremity joint kinetics. Medicine and Science in Sports and Exercise, 29, 233.
Baliunas, A. J., Hurwitz, D. E., Ryals, A. B., Karrar, A., Case, J. P., & Block, J. A. (2002). Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthritis Cartilage, 10, 573-579.
Blackburn, J. T., & Padua, D. A. (2008). Influence of trunk flexion on hip and k nee joint kinematics during a controlled drop landing. Clinical Biomechanics, 23, 313-319.
Blackburn, J. T., & Padua, D. A. (2009). Sagittal-Plane Trunk Position, Landing Forces, and Quadriceps Electromyographic Activity. Journal of Athletic Training, 44(2), 174-179.
Bobbert, M. F., & van Ingen Schenau, G. J. (1988). Coordination in vertical jumping. Journal of Biomechanics, 21, 249-262.
Chappell, J. D., Creighton, R. A.,Giuliani, C., Yu, B., & Garrett, W. E.(2007). Kinematicsand electromyography of landing preparation in vertical stop-jump:risk for noncontact anterior cruciate ligament injury. The American Journal of Sports Medicine, 35(2), 235–241.
Decker, M.J., Torry, M.R., Wyland, D.J., Sterett, W.I., & Steadman, J.R., (2003). Gender differences in lower extremity kinematics, kinetics, and energy absorption during landing. Clinical Biomechanics, 18, 662–669.
Devita, P., & Skelly, W. A. (1992). Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Medicine and Science in Sports and Exercise, 24, 108-115.
Donatelli, J. C. (1997). The evolution and mechanics of the midfoot and hindfoot. Journal of Back and Musculoskeletal Rehabilitation, 8, 57-64.
Gollhofer, A., Schmidtbleicher, D., & Dietz, V.(1984). Regulation of muscle stiffness in human locomotion. International Journal of Sports Medicine, 5, 19-22.
Griffin, L. Y., Agel, J., Albohm, M. J., Arendt, E. A., Dick, R. W., & Garrett, W. E. (2000). Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. The Journal of the American Academy of Orthopaedic Surgeons, 8, 141-150.
Guo, M., Axe, M. J., & Manal, K. (2007). The influence of foot progression angle on the knee adduction moment during walking and stair climbing in pain free individuals with knee osteoarthritis. Gait & Posture, 26, 436–441.
Hewett, T.E., Lindenfeld, T.N., Riccobene, J.V., & Noyes, F.R. (1999).The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. American Journal of Sports Medicine, 27, 699-706.
Hewett, T.E., Myer, G.D., Ford, K.R., Heidt, R.S., Colosimo, A.J.,McLean, S.G., Bogert, A.J.,Paterno, M.V., & Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loadingof the knee predict anterior cruciate ligament injury risk in femaleathletes. American Journal of Sports Medicine, 33, 492–501.
Hunt, M.A., Birmingham, T.B., Giffin, J.R., & Jenkyn, T.R. (2006).Associations among knee adduction moment, frontal plane ground reaction force, and lever arm during walking in patients with knee osteoarthritis. Journal of Biomechanics, 39, 2213–2220.
Lin, C.J., Lai, K. A., Chou, Y. L., & Ho, C. S. (2001) The effect of changing the foot progression angle on the knee adduction moment in normal teenagers. Gait and Posture, 14, 85–91.
Mcnitt-Gray, J. L. (1993). Kinetics of the lower extremities during drop landings from three heights. Journal of biomechanics, 7, 201-224.
OnaiL, J.A., Guskiewicz, K.M., Marshall, S.W., Giuliani, C., Yu, B., & Garrett, W.E., (2005). instruction of jump-landing tichnique using videotape feedback: altering lower extremity motion patterns. American Journal of Sports Medicine, (6), 831-842.
Nigg, B. M. (1985). Biomechanics load analysis and sport injuries in the lower extremities. Sports Medicine, 2, 367-379.
Radin,E.L., Yang,K.H., Riegger,C., Kish,V.L., & O'Connor,J.J. (1991). Relationship between lower limb dynamics and knee joint pain. Journal of orthopaedic research, 9, 398-405.
Schmitz, R. J., Kulas, A. S., Perrin, D. H., Riemann, B. L., & Shultz S. J. (2007). Sex differences in lower extremity biomechanics during single leg landings. Clinical Biomechanics, 22, 681–688.
Sharma, L., Lou, C., Cahue, S., & Dunlop, D. D. (2000). The mechanism of the effect of obesity in knee osteoarthritis. The mediating role of malalignment. Arthritis and Rheumatism. 43, 568-575.
Simpsonn, K.J., & Jiang, P. (1999). Foot landing position during gait influences ground reaction forces. Clinical Biomechanics, 14, 396-402.
Thackeray, C., & Beesont, P. (1996). In-toeing gait in children. A review of the literature. The Foot, 6, l-4.
Yu ,B., & Garrett,W.E. (2007). Mechanisms of non-contact ACL injuries. British Journal of Sports Medicine, 41, 47-51.
Yu, B., Lin, C. F., & Garrett, W.E. (2006). Lower extremity biomechanics during the landing of a stop-jump task. Clinical. Biomechanics, 21(3), 297–305.
Valiant, G. A., & Cavanagh, P. R. (1985). A study of landing from a jump. Biomechanics IX, 117-122.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top