跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張佑如
研究生(外文):Chang, Yu-Ju
論文名稱:不同厚度之EVA增高鞋墊對步態表現的影響
論文名稱(外文):Biomechanical Effect on Gait with Different Thickness of EVA Boosting Insoles Placement
指導教授:翁梓林翁梓林引用關係
指導教授(外文):Wong, Tzu-Lin
口試委員:蔡虔祿張家豪
口試日期:2011-06-22
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:體育學系碩士班
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:86
中文關鍵詞:鞋墊材質高跟鞋負荷率
外文關鍵詞:Material of insoleHigh heelsthe Loading rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:4
目的:探討低、中、高不同厚度EVA增高鞋墊(2公分、5.5公分、8公分)介入行走時,步態表現在運動學、動力學與下肢肌電圖參數方面的變化差異情形。研究對象:8名足弓正常且近半年無下肢病史之健康男性,年齡21.5±1.22歲、身高173.1±7.15公分、體重67.5±5.64公斤。方法與步驟:使用一台Mega speed 30k高速攝影機(100Hz) ,兩台AMTI測力板 (1000Hz) 與Biovision肌電儀 (1000Hz),採同步方法擷取受試者動作之資料。影片以Kwon3D動作分析軟體處理取得運動學參數;測力板原始訊號透過DasyLab 6.0分析軟體,經模組設定後取得垂直分力與前後分力,並以體重倍率(Body Weight, B.W)表示;肌電訊號經由DASYLab 6.0軟體模組設定,取得平均肌電振幅,並以最大自主收縮(MVC)之平均值進行標準化。資料使用SPSS for Windows 12.0套裝軟體以重複量數單因子變異數分析進行統計分析(α =.05)。結果:一、步態週期中的站立期、擺動期、單雙腳支撐期百分比;步幅;站立期的膝、踝關節平均角度與最大角度變化;站立期的身體重心高度落差與足跟接觸速度等均有達到顯著差異(P<.05);二、垂直分力的第一峰值、第二峰值與平均負荷率,及前後分力的制動力峰值與制動期衝量等均有達到顯著差異(P<.05);三、制動期之腓腸肌、推蹬期之股直肌均有達到顯著差異(P<.05)。結論:隨著增高鞋墊厚度的增加,發現運動學方面的參數大都與過去穿著高跟鞋行走的研究結果類似。但另一方面,由於EVA材質的吸震緩衝效果同時介入,因此相較於高跟鞋的研究結果,它減少了下肢肌群的活化情形並改變了部分動力學的參數如:平均負荷率、制動期衝量及制動力峰值。在增高鞋墊厚度5.5公分(厚度中)以內時,其平均值反而隨增高鞋墊厚度的遞增而遞減甚至沒有變化;但是鞋墊的緩衝性能有限,當增高鞋墊厚度持續增加至8公分時(厚度高),平均負荷率、制動期衝量及制動力峰值便隨厚度的遞增而增加,這時便與高跟鞋的研究結果一樣了。因此,本研究建議使用具吸震效果的增高鞋墊以取代直接穿高跟鞋行走;但墊高程度仍有其限制,若厚度過高超過5.5公分,則增高鞋墊將形同高跟鞋而較失去鞋墊本身所標榜的保護功能。
Purpose:To explore the changes in kinematical, dynamic and lower limbs electromyographic (EMG) parameters when walking with three different thickness of EVA boosting insoles (2cm, 5.5cm, 8 cm) intervened. Objects:Eight healthy male adults with normal arch and without records of leg pain in past six-month (age: 21.5±1.22 years old, height:173.1±7.15cm, weight: 67.5±5.64kg). Methods:A Mega speed 30k high-speed camera (100Hz), combined with two AMTI force plates (1000Hz) and Biovision EMG (1000Hz) were used concurrently to collect the data of subjects’ motion. Kwon3D motion analysis software was used to process the video and to quantify the kinematic parameters. DasyLab 6.0 analysis software was used to process the original signals of forceplate, and the vertical force and horizontal force were obtained after filtering and scaling. The forces were standardized and were indicated in body weight (B.W.). The EMG signals were processed by the DASYLab 6.0 software to obtain average EMG amplitude. The EMG amplitude was standardized based on the mean of maximum voluntary contraction (MVC). SPSS for Windows 12.0 package software and statistical method one-way ANOVA were used to conduct statistical analyses on the data (α =. 05).
Results:
1. Percentage of stance phase, swing phase, single and double support phase in gait cycle; stride length; knee, ankle joint average and maximum change in angle during stance phase; the vertical difference in CM position of body during stance phase; heel contact velocity, were all significantly different (p<.05).
2. The first peak force (FPF), second peak force (SPF), average loading rate of vertical ground reaction force, braking force peak (BFP) of horizontal ground reaction force and total braking force impulse were significantly different (p<.05).
3. The average EMG of GAS in the braking phase and the average EMG of RF in the propulsion phase reached the significant difference (p<.05).
Conclusion:When the thickness of EVA boosting insoles increasing, most parameters in kinematical are the same with the studies of walking with high heels in the past. But due to the absorbing in force of EVA , it recruited less motor units of muscle compared with the studies of high heels. On the other hand, below the thickness of 5.5cm (middle thickness), some dynamic parameters like average loading rate, BFP of horizontal ground reaction force and total braking force impulse are diminished or even no significant difference by the increasing in thickness. But the buffer of boosting insole is limited, when the thickness is up to 8cm (high thickness), these three dynamic parameters will enlarge such as the results of high heels studies in the past. Therefore, it suggests that using EVA boosting insoles to replace wearing high heels directly for the security; but the effect is finite, if the thickness is up more than 5.5cm, the boosting insoles may just like high heels but loss the original protection itself.

目 次
中文摘要........................................................................................................i
英文摘要......................................................................................................iii
目次...............................................................................................................v
表次............................................................................................................viii
圖次...............................................................................................................x
第一章 緒論…………………………………………………………….01
第一節 問題背景………………………………………………….01
第二節 研究目的………………………………………………….04
第三節 研究範圍與限制………………………………………….04
第四節 名詞操作性定義………………………………………….05
第二章 文獻探討……………………………………………………….10
第一節 足跟墊高之相關研究…………………………………….10
第二節 鞋墊材質特性對下肢運動的影………………………….15
第三節 步行的相關文獻………………………………………….19
第四節 文獻總結………………………………………………….22
第三章 研究方法與步驟……………………………………………….23
第一節 研究對象………………………………………………….23
第二節 實驗時間與地點………………………………………….23
第三節 研究架構………………………………………………….24
第四節 實驗儀器與設備…………………………………………25
第五節 實驗場地與儀器架設…………………………………….28
第六節 實驗方法與步驟………………………………………….30
第七節 資料處理與統計分析…………………………………….38
第四章 結果…………………………………………………………….40
第一節 不同厚度增高鞋墊介入行走時運動學之參數分析…….40
第二節 不同厚度增高鞋墊介入行走時動力學之參數分析…….50
第三節 不同厚度增高鞋墊介入行走時下肢肌電圖之分析…….54
第四節 不同厚度增高鞋墊介入行走對步態表現中各參數特性的
同步分析………………………………………………….60
第五章 討論…………………………………………………………….64
第一節 不同厚度增高鞋墊介入行走時其對
運動學參數的影響……………………………………….64
第二節 不同厚度增高鞋墊介入行走時其對
動力學參數的影響……………………………………….70
第三節 不同厚度增高鞋墊介入行走時下肢肌電訊號的影響….74
第四節 綜合討論………………………………………………….77
第六章 結論與建議…………………………………………………….79
參考文獻………………………………………………………………….80
中文部分…………………………………….…………….….………80
外文部分…………………………………….……….……………….82
附錄
附錄一、受試者須知及參與同意書…………………………………86

參考文獻
中文部份
王韻涵(2010)。步寬差異對健走運動之生物力學分析。未出版碩士論文,國立台
北教育大學,台北市。
王顯智、黃惠貞(2006)。阿基里斯腱的解剖生理功能及可能的傷害因素。大專
體育,84,202-206。
李茂昌、李淑貞、劉謹緣、黃世旭(1996)。中國青年人步態常模之建立,中華物療誌,21,21-38。
李開偉(2003)。四種女鞋的人因工程評估:鞋底在地板上之摩擦係數與穿著行走時之腿部肌電活動。中華工程科技通訊,20,472-480。
林耿彰(2008)。不同鞋跟高度下階梯之生物力學分析。未出版碩士論文,國立台
北教育大學,台北市。
林羿君(2010)。軟硬表面介入對老年人行走於不同斜坡下肢勁度調節與肌肉活化
之影響。未出版碩士論文,國立台北教育大學,台北市。
洪維憲(2003)。女性高跟鞋及鞋墊的生物力學與傳力機制分析。未出版博士論
文,國立台灣科技大學,台北市。
徐婉靜(1992)。五歲和六歲幼童步態之生物力學分析。未出版碩士論文,國立臺灣師範大學,臺北市。
彭俊維(2009)。不同鞋跟高度行走光滑地面之生物力學分析。未出版碩士論文,
國立台北教育大學,台北市。
張志凌、李開偉(2006)。運動鞋在摩擦力反彈能力吸震能力動態效能之運動績效
研究。行政院國科會專題研究計畫成果簡報。
張敬德、郝智秀、張宇、周大佛、方新(2007)。鞋跟高度對地面反作用力和鞋底壓
力中心的影響。中國康復醫學雜誌,22(3),241-243。

相子元(1997)。足部運動生物力學研究。財團法人鞋類設計暨技術研究中心委託學術機構研究報告。
邱宏達、相子元(2007)。鞋內底與附加吸震墊對不同運動鞋避震能力之影響。成
大研發快訊,2(7),8-9。
邱宏達、楊文賓、相子元(1998)。運動鞋彈性及避震能力之探討。國立體育學院
論叢,8(2),271-281。
陳立元(1995)。在跑步機上後退步態的力學及肌電圖分析。未出版碩士論文,中山醫學院,臺中市。
陳為仁(2000)。EVA 發泡鞋墊能量回傳性能測試分析。行政院國科會專題研究
計畫成果簡報。
黃雅婷(2008)。背向與正向行走斜坡之生物力學分析。未發表之碩士論文,國立台北教育大學,臺北市。
黃詩帆(2006)。國小學童不同背重率行走之生物力學探討。未出版碩士論文,國立台北教育大學,臺北市。
楊啟新(1987)。正常步態資料之建立。未出版碩士論文。國立成功大學,臺南市。
郭金明、張國權、阿布米力提.阿里木江 (2007)。穿高跟鞋對中青年女性腰椎生理曲度的影響。臨床骨科雜誌,10(4),332-333
蔣仁翔(2006)。慢跑於爬坡之地面反作用力分析研究。未發表之碩士論文,私立輔仁大學,新北市。
錢競光、宋雅傳、李勇強、唐瀟(2006)。步行動作的生物力學原理及其步態分析。南京體育學院學報,5(4),1-7。




英文部份
Astrand, P., & Rodahl, K. (1970). Textbook of work physiology, 60-61.
Brigit, D. W., Dirk, D. C., & Matthieu, L. (1995). The effect of varying midsole
hardness on impact forces and on foot motion in the frontal plane during running.
Journal of Applied Biomechanics, 11, 395-406.
Carol, W., Sarch, M. G., & Sharon, J. D. (1999). The shock attenuation characteristics
of four different insoles when worn in a military boot during running and
marching. Gait& Posture, 9(1), 31-37.
Carol, M. H., Claire, W., Adrian, J., & Sharon, J. D. (2002). The influence of
simulated wear upon the ability of insoles to reduce peak pressures during running
when wearing military boots. Gait & Posture, 16(3), 297-303.
Cham, R., & Redfern, M. S. (2001). Lower extremity corrective reactions to slip events. J Biomech, 34(11), 1439–1445.
Clarke, T. E., Frederick, E. C., & Cooper, L. B. (1983). Effects of shoe cushioning upon ground reaction forces in running. International Journal of sports medicine, 4(4), 247-251.
Clarke, Frederick, & Hamill. (1983). The study of rearfoot movement in running. In Frederick, E. C. Sport Shoes and playing Surfaces.
Ebbeling, C. J., Hamill, J., & Crussemeyer, J. A. (1994). Lower extremity mechanics and energy cost of walking in highheeled shoes. Journal of Orthopedics Sports Physical Therapy ,19, 190-196.
Foti, T., & Hamill, J. (1993). Shoe cushioning effects on vertical ground reaction force
during running. J. Biomechanics, 27(6), 665.
Greer, N. L. (1988). Dynamics of children’s gait. Unpublished doctoral dissertation, University of Massachusetts.
Hetsroni, Iftach, Finestone, Aharon, Milgrom, Charles, Ben-Sira, Nyska, Meir, Mann, Gideon, Almosnino, Sivan, Ayalon, Moshe (2008). The Role of Foot Pronation in the Development of Femoral and Tibial Stress Fractures: A Prospective Biomechanical Study. Journal of Sport Medicine, 18(1), 18-23.
Hong, W. H., Lee, Y. H., & Chen, H. C. (2007). The effect of insert on muscle activities during high-heeled gait. Journal of Biomechanics, 40, 111.
Hung-Ta Chiu, Tzyy-Yuang Shiang (2009). Effects of Insoles and Additional Shock
Absorption Foam on the Cushioning Properties of Sport Shoes. Journal of Applied
Biomechanics, 23(2),119-127.
James, C. R., Dufek, J. S., & Bates, B. T. (2006). Number of trials necessary to
achieve performance stability of selected ground reaction force variables during
landing. Journal of Sports Science and Medicine, 6, 126-134.
Kaelin, X., Denoth, J., Stacoff, A., & Stussi, E. (1985). Cushioning during
running-material tests contra subject tests. Biomechanics:Current interdisciplinary
research, 26(3), 651-656.
Kathleen, J. G., & Christopher, M. P. (2005). Gait kinematics and kinetics of 7-year-old children: a comparison to adults using age-specific anthropometric data. Gait and Posture, 21, 141-145.
Kerrigan, D. C., Todd, M. K., & Riley, P. O. (1998). Knee osteoarthritis and high-heeled shoes. The Lancet, 351 (9), 1399–1401.
Kramers, I. A., Quervain, M. D., Benz, D. A.,Muller, R., & Stussi, E. (1996). Trunk and pelvic postural adaptation during high heeled gait. Gait and Postur, 4, 196-197.
Laufer, Y. (2003).Age-and gender-related changes in the temporal-spatial characteristics of forwards and backwards gaits. Physiotherapy Research International, 8, 131-142.

Lee, C. C., Jeong, E. H., & Andris, F. (2001). Biomechanical effects of wearing
high-heeled shoes. International Journal of Industrial Ergonomics ,28, 321-326.
Leroux, A., Fung, J., & Barbeau, H. (2002). Postural adaptation to walking on inclined surfaces: I. Normal strategies. Gait Posture, 15(1), 64-74.
McAuley, E. (1991). Injuries in women’s gymnastics-The state of the art. The American Joural of Sports Medicine, 15, 558-565.
McBryde, A. M. (1975). Stress fractures in athletes. The American Journal of Sports Medicine, 8(5), 212-217.
McGraw-Hill Brigit, D. W., Dirk, D. C., & Matthieu, L. (1995). The effect of varying midsole hardness on impact forces and foot motion during foot contact in running. Journal of Applied Biomechanics, 11(4), 395-406.
McIntosh, A. S., Beatty, K. T., Dwan, L. N., & Vickers, D. R. (2006). Gait dynamics on an inclined walkway. J Biomech(abstract).
Nigg, B. M., Bahlsen, H. A., Luethi, S. M. & Stokes, S. (1988). The influence of running velocity and midsole hardness on external impact forces in heel-toe running. Journal of Biomechanics, 20(10), 951-959.
Nitto, E., & Hahigian, S.H. (1975). Severe ankle injuries while wearing elevated platform shoes. Ohio Medicine, 71, 137-141.
Nordin, M., & Frankel, V. H. (2001). Basic Biomechanics of the Musculoskeletal System, (3rded). Philadelphia: Lea & Febiger
Norkin, C. C., & Levangie, P. K. (1992). Joint Structure & Function:A Comprehensive Analysis(2nd). 448-493. Ohio:Philadelphia. F.A. Davis Company.
Nuber, G. W. (1998). Biomechanics of the foot and ankle during gait. Clinical Sports Medicine, 7, 1-13.


Quoc, H. L., Amina, A., Silvano, E., & Laurent, B. (2009). Towards a footwear design
tool: Influence of shoe midsole properties and ground stiffness on the impact force
during running. Journal of biomechanics, 12(5), 310-317.
Roger, J., Joseph, A. H., Janet, S. D., & Barry, T. B. (2006).Number of trials necessary to achieve performance stability of selected ground reaction force variables during landing.Journal of Sports Science and Medicine, 6, 126-134.
Scholl, W. (1931). The Human Foot: Anatomy, Physiology,Mechanics, Deformities and Treatment. Charles C.Thomas, Springfield, IL.
Snel, J. G., Delleman, N. J., Heerkens, Y. F., & Schenau, G. J. (1985). Shock-absorbing
characteristics of running shoes during actual running.Biomechanics IX-B,133-137.
Stefanyshyn, D. J., Nigg, B. M., Fisher, V. B., & Liu, W. (2000). The influence of high heeled shoes on kinematics ,kinetics,and muscle EMG of normal female gait. Journal of Applied Biomechanic , 16, 309-319.
Zhang, S., Clowers, K., Kohstall, C., & Yu, Y. J. (2005). Effect of various midsole
densities of basketball shoes on impact attenuation during landing activities.
Journal of Applied Biomechanics, 21,3-17.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top