跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳冠宇
研究生(外文):Wu, KuanYu
論文名稱:使用多攝影機進行廣域的長程物件追蹤
論文名稱(外文):Wide Area Object Tracking using Multiple Cameras
指導教授:林道通
指導教授(外文):Lin, DawTung
口試委員:蔡文祥蘇木春
口試委員(外文):Tsai, WenHsiangSu, MuChun
口試日期:2012-07-06
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:57
外文關鍵詞:Kalman filterhomographycameras switchingobject matchingoverlapping and non-overlapping area
相關次數:
  • 被引用被引用:0
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一套整合系統能夠利用多個攝影機在攝影機視野重疊及視野非重疊
區域進行廣域的物件追蹤。主要是利用卡曼濾波器進行單一攝影機的物件追蹤和預
測物件在攝影機視野非重疊區域的軌跡。另外,系統利用了TCP/IP 來進行資訊的傳
遞。對於攝影機視野轉換的問題,利用了homography 來計算相對應的點與直線。攝
影機視野可以用於多攝影機轉換的依據。最後,本系統可以在任何情況下進行廣域
的物件長程追蹤。
In this paper, An integration system is proposed for object tracking of multiple cameras with
overlapping and non-overlapping fields of views(FOVs) for wide areas. The Kalman filter is applied for
object tracking using a single camera and object motion prediction across blind regions using multiple
cameras with non-overlapping fields of view(FOV). Furthermore, the communication in multiple
cameras case is constituted using TCP/IP network. For the camera field of view (FOV) problem, a
homography technique is used to find the correspondence in each view. The FOV lines is used to achieve
camera switching. In addition, we integrate various features for object matching. Finally, this system can
track objects in a wide area no matter the FOVs are overlapping , non-overlapping or mixed. The
simulation results of the proposed system in overlapping and non-overlapping areas are demonstrated,
and the progress of those issues were discussed as well.
1 Introduction
1.1 Motivation
1.2 Objective
1.3 Thesis Organization
2 Literature Survey
2.1 Survey of Single Camera Tracking
2.2 Survey of Multiple Cameras Tracking
3 System Architecture
3.1 Client Architecture
3.2 Server Architecture
4 Multiple Cameras Tracking
4.1 Calibration
4.2 Camera Switching
4.3 Overlapping Area and Non-overlapping Area
4.4 Object Matching
4.5 Tracking in the Blind Region
5 Experimental Results
5.1 Simulation Results with FOV Overlapping
5.2 Simulation Results with Non-Overlapping FOVs
5.3 Simulation Results mixed Situations of Overlapping and Non-overlapping FOVs
6 Conclusion and Future Work
Bibliography
[1] T.B. Moeslund and E. Granum. A survey of computer vision-based human motion
capture. Computer Vision and Image Understanding, 81(3):231{268, 2001.
[2] W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on visual surveillance of object mo-
tion and behaviors. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 34(3):334{352, 2004.
[3] A.J. Lipton, H. Fujiyoshi, and R.S. Patil. Moving target classi cation and tracking from
real-time video. In Applications of Computer Vision, 1998. WACV'98. Proceedings.,
Fourth IEEE Workshop on, pages 8{14, 1998.
[4] O. Masoud and N.P. Papanikolopoulos. A novel method for tracking and counting
pedestrians in real-time using a single camera. Vehicular Technology, IEEE Transactions
on, 50(5):1267{1278, 2001.
[5] W.E.L. Grimson, C. Stau er, R. Romano, and L. Lee. Using adaptive tracking to
classify and monitor activities in a site. In Computer Vision and Pattern Recognition,
1998. Proceedings. 1998 IEEE Computer Society Conference on, pages 22{29, 1998.
[6] I. Haritaoglu, D. Harwood, and L.S. Davis. W4: Real-time surveillance of people and
their activities. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
22(8):809{830, 2000.
[7] C. Kim and J.N. Hwang. Fast and automatic video object segmentation and track-
ing for content-based applications. Circuits and Systems for Video Technology, IEEE
Transactions on, 12(2):122{129, 2002.
[8] E. Stringa and C.S. Regazzoni. Real-time video-shot detection for scene surveillance
applications. Image Processing, IEEE Transactions on, 9(1):69{79, 2000.
[9] C. Stau er and W.E.L. Grimson. Adaptive background mixture models for real-time
tracking. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society
Conference on., volume 2, 1999.
[10] Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction. In
Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference
on, volume 2, pages 28{31, 2004.
[11] L. Wang, T. Tan, W. Hu, and H. Ning. Automatic gait recognition based on statistical
shape analysis. Image Processing, IEEE Transactions on, 12(9):1120{1131, 2003.
[12] H.C. Lee and D.T. Lin. Intelligent surveillance system for halt detection and people
counting. Journal of Information Technology and Applications, 2(3):141{150, 2007.
[13] Q. Xiong and C. Jaynes. Multi-resolution background modeling of dynamic scenes using
weighted match lters. In Proceedings of the ACM 2nd international workshop on Video
surveillance & sensor networks, pages 88{96, 2004.
[14] D.T. Lin and L.W. Liu. Object tracking and people counting at multiple distances.
2008.
[15] R.E. Kalman. A new approach to linear ltering and prediction problems. Journal of
Basic Engineering, 82(1):35{45, 1960.
[16] R. Rosales and S. Sclaro . 3D trajectory recovery for tracking multiple objects and
trajectory guided recognition of actions. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2:117{123, 1999.
[17] S.T. Stillman, R. Tanawongsuwan, and I.A. Essa. A system for tracking and recognizing
multiple people with multiple camera. 1998.
[18] Jinman Kang, Isaac Cohen, and Gerard Medioni. Object reacquisition using invari-
ant appearance model. In Proceedings of the Pattern Recognition, 17th International
Conference on (ICPR'04) Volume 4 - Volume 04, ICPR '04, pages 759{762, 2004.
[19] I. Pavlidis, V. Morellas, P. Tsiamyrtzis, and S. Harp. Urban surveillance systems: From
the laboratory to the commercial world. Proceedings of the IEEE, 89(10):1478{1497,
2001.
[20] G.P. Stein. Tracking from multiple view points: Self-calibration of space and time. In
Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference
on., volume 1, 1999.
[21] L. Lee, R. Romano, and G. Stein. Monitoring activities from multiple video streams:
Establishing a common coordinate frame. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 22(8):758{767, 2000.
[22] L.-J. Zhu, J.-N. Hwang, and H.-Y. Cheng. Tracking of Multiple Objects Across Multiple
Cameras with Overlapping and Non-Overlapping Views. In Technical Report, 2009.
[23] S.M. Khan and M. Shah. A multiview approach to tracking people in crowded scenes
using a planar homography constraint. Lecture Notes in Computer Science, 3954:133{
146, 2006.
[24] K. Dimitropoulos, N. Grammalidis, D. Simitopoulos, N. Pavlidou, and M. Strintzis.
Aircraft Detection and Tracking Using Intelligent Cameras. In IEEE International
Conference on Image Processing, pages 594{597, 2005.
[25] Q. Cai and J.K. Aggarwal. Tracking human motion using multiple cameras. In Inter-
national Conference on Pattern Recognition, volume 13, pages 68{72, 1996.
[26] T. Fukuda, T. Suzuki, F. Kobayashi, F. Arai, Y. Hasegawa, and M. Negi. Seamless
tracking system with multiple cameras. Industrial Electronics Society, 2000. IECON
2000. 26th Annual Confjerence of the IEEE, 2, 2000.
[27] K. Nummiaro, E. Koller-Meier, T. Svoboda, D. Roth, and L. Van Gool. Color-based
object tracking in multi-camera environments. Pattern Recognition, pages 591{599,
2003.
[28] T.H. Chang and S. Gong. Tracking multiple people with a multi-camera system. In
Multi-Object Tracking, 2001. Proceedings. 2001 IEEE Workshop on, pages 19{26, 2001.
[29] A. Koutsia, T. Semertzidis, K. Dimitropoulos, N. Grammalidis, A. Kantidakis, K. Geor-
gouleas, and P. Violakis. Trac Monitoring using Multiple Cameras, Homographies and
Multi-Hypothesis Tracking. In 3DTV Conference, 2007, pages 1{4, 2007.
[30] M. Ringer, J. Lasenby, Signal Processing Group, Engineering Dept, and University
of Cambridge. Modelling and tracking articulated motion from multiple camera views.
Citeseer, 2000.
[31] O. Javed, K. Sha que, and M. Shah. Appearance modeling for tracking in multiple
non-overlapping cameras. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2005. CVPR 2005, volume 2, pages 26{33, 2005.
[32] A. Chilgunde, P. Kumar, S. Ranganath, and H. WeiMin. Multi-camera target tracking
in blind regions of cameras with non-overlapping elds of view. BMVC04, pages 1{10,
2004.
[33] D.T. Lin, K.Y. Huang, et al. Collaborative pedestrian tracking and data fusion with
multiple cameras. Information Forensics and Security, IEEE Transactions on, (99):1{1,
2011.
[34] D.T. Lin and K.Y. Huang. Object Tracking of Multiple Cameras. 2009.
[35] R. Hartley and A. Zisserman. Multiple view geometry in computer vision 2/e. Cam-
bridge, 2003.
[36] H. Zeng, X.M. Deng, and Z.Y. Hu. A new normalized method on line-based homography
estimation. Pattern Recognition Letters, 29:1236{1244, 2008.
[37] S. Khan and M. Shah. Consistent labeling of tracked objects in multiple cameras with
overlapping elds of view. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 25(10):1355{ 1360, 2003.
[38] K. Fujimura, Y. Hyodo, and S. Kamijo. Pedestrian tracking across panning camera net-
work. In Intelligent Transportation Systems, 2009. ITSC'09. 12th International IEEE
Conference on, pages 1{6. IEEE, 2009.
[39] K.W. Chen, C.C. Lai, Y.P. Hung, and C.S. Chen. An adaptive learning method for
target tracking across multiple cameras. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1{8. IEEE, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top