( 您好!臺灣時間:2021/05/15 09:16
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Wei, Ding-Yu
論文名稱(外文):Near-Field Wireless Power Integrated Circuit without External Capacitors
指導教授(外文):Huang, Hong-Yi
口試委員(外文):Su, Chau-ChinChiang, Jen-ShiunHuang, Hong-Yi
外文關鍵詞:Near-field wireless powerExternal capacitor lessPSRReliability
  • 被引用被引用:0
  • 點閱點閱:471
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
  現今無線傳能技術廣泛應用於生醫電子及RFID等積體電路系統,利用無線方式傳遞電能與訊號。縮小接收端元件尺寸為目前許多研究努力的方向[1]-[5]。而隨著製程進步,電晶體耐壓因閘極厚度下降而減低,如何在次微米製程下設計可靠的電源積體電路也是一大挑戰。本研究提出一無外接電容之近場無線電源積體電路,除了傳能耦合線圈外,無其他外接元件,並提升了可靠度。測試晶片以台積電0.18μm 1P6M標準製程實現,晶片面積為0.804 × 0.986 mm2。透過晶片量測驗證,當不同大小的交流電壓由傳送端耦合至接收端,接收端皆能產生穩定之1.8V直流輸出電壓,以供給1mA負載電流。其中輸出電壓漣波小於1%輸出電壓。
  Recently wireless power transmission technology is widely used by biomedical electronics, RFID and the other integrated circuit systems. It transmits energy and signal through wireless communication. The trend is to reduce the device size at the receiver’s side as presented by several studies [1]-[5]. With the advancement of process technologies, the withstand voltage of transistors are decreased by reducing the thickness of gate oxide. So, to design a reliable power integrated circuit becomes a big challenge. This research presents a near-field wireless power integrated circuit without external capacitors, no other external components are needed but the coupling coil and the systems’ reliability is also enhanced. The test chip is implemented by TSMC 0.18μm 1P6M process and the chip area is 0.804 × 0.986 mm2. The measurement result shows that the receiver can generate a stable 1.8V DC output voltage to supply 1mA output current under different amplitudes of the coupling input voltage from transmitter. The output voltage ripple is less than 1% of output voltage.
謝 辭 I
中文論文提要 III
英文論文提要 IV
目 錄 V
圖目錄 VIII
表目錄 XII

第一章 緒 論 1
1.1 研究動機與目的 1
1.2 論文章節說明 1

第二章 無線電源簡介與先前技術探討 3
2.1 無線電源傳輸簡介 3
2.2 各子電路先前技術探討 4
2.2.1 整流電路(Rectifier) 4
2.2.2 限壓電路(Limiter) 15
2.2.3 穩壓電路(Regulator) 16
2.3 相關近場無線傳能系統電路 20

第三章 無外部電容無線電源電路架構 22
3.1 架構分析 22
3.1.1 差動式CMOS全波整流電路 23
3.1.2 高頻寬電源供應拒斥之低壓降穩壓電路 29
3.1.3 疊接Power NMOS與低通濾波器 31
3.1.4 Bandgap電壓電路 33
3.1.5 兩級式運算放大器 35
3.1.6 限壓電路 (Voltage Limiter) 38
3.2 設計考量 40

第四章 電路佈局與佈局後模擬結果 42
4.1 電路佈局 42
4.1.1 整流電路佈局 43
4.1.2 穩壓電路和限壓電路整體佈局 44
4.1.3 兩級式運算放大器佈局 45
4.1.4 減法電路佈局 46
4.1.5 限壓電路佈局 48
4.1.6 Power MOS佈局 48
4.1.7 核心電路佈局 50
4.1.8 整體電路佈局 51
4.2 佈局後模擬結果 52
4.2.1 電流路徑上主要節點電壓 52
4.2.2 不同corner下之輸出電壓 54
4.2.3 限壓電路操作 55
4.2.4 穩壓電路之PSR 56
4.2.5 穩壓電路特性 58
4.2.6 Bonding電感效應 66
4.3 穩壓電路規格比較 68

第五章 晶片量測 70
5.1 測試板規劃 70
5.2 晶片測試 71
5.3 無線傳能測試 74

第六章 結論與未來研究方向 82
6.1 結論 82
6.2 未來研究方向 82

參考論文 83

[1]P. Cong, N. Chaimanonart, W. H. Ko and D. J. Young, “Wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3631-3644, Dec. 2009.
[2]M. R. Haider, S. K. Islam, S. Mostafa, M. Zhang and T. Oh, “Low-Power Low-Voltage Current Readout Circuit for Inductively Powered Implant System,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 4, pp. 205-213, Aug. 2010.
[3]H. M. Lu, C. Goldsmith, L. Cauller and J.-B. Lee, “MEMS-based inductively coupled RFID transponder for implantable wireless sensor applications,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2412-2414, Jun. 2007.
[4]B. Chen, Y. Zhu, K. Zhu, T. Mo and Z. Que, "The design of a wireless power transmission mechanism for locomotion in active medical inspection MEMS," in IEEE Int. Symp. embedded computing, 2008, pp. 382-387.
[5]X. Liu, F. Zhang, S. Hackworth, R. J. Sclabassi, and M. Sun, “Wireless power transfer system design for implanted and worn devices,” in IEEE Annu. northeast bioengineering Conf., 2009, pp. 1-2.
[6]P. Li, J. Principe and R. Bashirullah, “A wireless power interface for rechargeable battery operated neural recording implants,”in Annu. Int. Conf. IEEE Eng. in medicine and biology Soc., 2006, pp. 6253-6256.
[7]C. J. Cheng, C. J. Wu and S.Y. Lee, “Programmable pacing channel with a fully on-chip LDO regulator for cardiac pacemaker,” in IEEE Asian solid-state circuits Conf., 2008, pp. 285–288.
[8]J. F. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique,” IEEE J. Solid-State Circuits, vol. SC-11, no. 3, pp. 374-378, Jun. 1976.
[9]R. Barnett, G. Balachandran, S. Lazar, B. Kramer, G. Konnail, S. Rajasekhar and V. Drobny, ”A passive UHF RFID transponder for EPC Gen 2 with -14dBm sensitivity in 0.13μm CMOS,” in Int. solid-state circuits Conf. Digt. Tech. papers, 2007, pp. 582-583.
[10]U. Karthaus and M. Fischer, “Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input power,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1602-1608, Jan. 2006.
[11]M. M. Ahmadi and G. A. Jullien, “A wireless-implantable microsystem for continuous blood glucose monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 3, pp. 169-180, Jun. 2009.
[12]F. Kocer and M. P. Flynn, “A new transponder architecture with on-chip ADC for long-range telemetry applications,” IEEE J. Solid-State Circuits, Vol. 41, No. 5, pp. 557-564, May 2006.
[13]A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, J. Castaneda and F. D. Flaviis, “A UHF near-field RFID system with fully integrated transponder,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1267-1277, May 2008.
[14]T. Umeda, et al., “A 950-MHz rectifier circuit for sensor network tags with 10-m distance,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 35-41, Jan. 2006.
[15]H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui and K. Gotoh, “A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 101–110, Jan. 2007.
[16]K. Kotani and T. Ito, “High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs,” in IEEE Asian solid-state circuits Conf., 2007, pp. 119–122.
[17]K. Kotani, A. Sasaki, and T. Ito, "High-efficiency differential-drive CMOS rectifier for UHF RFIDs," IEEE J. Solid-State Circuits, Vol.44, No.11, pp.3011-3018, Nov. 2009.
[18]P. Y. Or and K. N. Leung, “An output-capacitorless low-dropout regulator with direct voltage-spike detection,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 458–466, Feb. 2010.
[19]J. P. Guo and K. N. Leung, "A 6-uW chip-area-efficient output-capacitorless LDO in 90-nm CMOS technology," IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1896-1905, Sep. 2010.
[20]S. Heng and C.-K. Pham, “A low-power high-PSRR low-dropout regulator with bulk-gate controlled circuit,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 4, Apr. 2010.
[21]M. El-Nozahi, A. Amer, J. Torres, K. Entesari and E. Sanchez-Sinencio, “High PSR low drop-out regulator with feed-forward ripple cancellation technique,” IEEE J. Solid-State Circuits, vol. 45, no.3, pp. 658-664, Mar. 2010.
[22]C. Zhan and W. H. Ki, “A low dropout regulator for SoC with high power supply rejection and low quiescent current,” in Proc. IEEE Int. Symp. integrated circuits, 2009, pp. 37-40.
[23]V. Gupta and G. A. Rincon-Mora, “A 5mA 0.6μm CMOS miller-compensated LDO regulator with -27dB worst-case power-supply rejection using 60pF of on-chip capacitance,” in Int. solid-state circuits Conf. Digt. Tech. papers, 2007, pp. 520-521.
[24]S. K. Hoon, J. Chen and F. Maloberti, "An improved bandgap reference with high power supply rejection," in IEEE Int. Symp. circuits and systems, 2002, pp. 833-836.
[25]S. K. Hoon, S. Chen. F. Maloberti, J. Chen, and B. Aravind, “A low noise, high power supply rejection low dropout regulator for wireless system-on-chip applications,” in Proc. IEEE custom integrated circuits Conf., 2005, pp. 754-757.

第一頁 上一頁 下一頁 最後一頁 top