|
[1] R. C. Gonzalez, and R. E. Woods, Digital image processing, 2nd ed. Prentice Hall, 2002. [2] R. Ben-Ari and N. Sochen,“Stereo matching with mumford-shah regularization and occlusion handing,” IEEE Trans. PAMI, vol. 32, pp.2071-2084, 2010. [3] V. Kolmogorov and R. Zabih,“Computing visual correspondence with occlusions using graph cuts,”in Proc. 8th International Conference on Computer Vision, Vancouver, Canada, pp.508-515, 2001, July 7-14. [4] Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér,“Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling,” IEEE Trans. PAMI, vol. 31, no. 3, pp.492-504, 2009. [5] D. Min and K. Sohn,“Cost aggregation and occlusion handling with WLS in stereo matching,” IEEE Trans. Image Processing, Vol.17, no.8, pp.1431-1442, 2008. [6] J. Y. Bouguet, Camera Calibration Toolbox for Matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example5.html. [7] M.Z. Brown, D. Burschka, and G.D. Hager. “Advances in computational stereo,” IEEE Trans. PAMI, vol. 25, pp. 993-1008, 2003. [8] D. Scharstein and R. Szeliski.“A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,”International Journal of Computer Vision, vol. 47, pp. 7-42, 2002. [9] P.J.M Aarts and V. Laarhoven, “Simulates annealing and applications: Mathematics and its applications,”D. Reidel Publishing Company, 1987. [10] M.S. Lew, T.S. Huang, and K.W. Wang,“Learning and feature selection in stereo matching,” IEEE Trans. PAMI, vol. 16, no. 9, pp. 869-881, 1994. [11] R. Zabih and J. Woodfill, “Non-Parametric Local Transforms for Computing Visual Correspondence,” Proc. Third European Conf. Computer Vision, pp. 150-158, 1994. [12] K. Wang, “Adaptive stereo matching algorithm based on edge detection,” International Conference on Image Processing, vol. 2, pp. 1345-1348, 2004. [13] O. Veksler, “Stereo correspondence with compact windows via minimum ratio cycle,” IEEE Trans. PAMI, vol. 24, no. 12, pp. 1654–1660, 2002. [14] O. Veksler, “Fast variable window for stereo correspondence using integral images,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, 2003, pp. 556–561. [15] Z. Zhai, Y. Lu, and Hong Zhao, “Stereo matching with adaptive support-pixel set and adaptive support-weight,” in Proc. International Conference on Computational Intelligence and Security, 2009, pp. 598-602. [16] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister, “Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling,” IEEE Trans. PAMI, vol. 31, no. 3, pp. 492-504, 2009. [17] F. Tombari, S. Mattoccia and L. Di Stefano, “Segmentation-based adaptive support- for accurate stereo correspondence,” PSIVT, pp. 427–438, 2007. [18] K. J. Yoon and I. S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Trans. PAMI, vol. 28, no. 4, pp. 650–656, 2006. [19] K. J. Yoon and I. S. Kweon, “Locally Adaptive support-Weight Approach for Visual Correspondence Search,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 924-931. [20] I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs, “A maximum likelihood stereo algorithm,” Computer Vision and Image Understanding, vol. 63, no. 3, pp. 542-567, 1996. [21] J. Kim, K. Lee, B. Choi, and S. Lee, “A dense stereo matching using two-pass dynamic programming with generalized ground control points,” in Proc. of Conf. on Computer Vision and Pattern Recognition, vol. 2, San Diego, CA, June 20-25, 2005, pp.1075-1082. [22] O. Veksler, “Stereo correspondence by dynamic programming on a tree,” in Proc. of Conf. on Computer Vision and Pattern Recognition, vol. 2, San Diego, CA, June 20-25, 2005, pp. 384-390. [23] Z. Xu, L. Ma, M. Kimachi, and M. Suwa, “Efficient contrast invariant stereo correspondence using dynamic programming with vertical constraint,” Visual Computer, vol. 24, no. 1, pp. 45-55, 2008. [24] M. Gong and Y. Yang, “Fast unambiguous stereo matching using reliability-based dynamic programming,” IEEE Trans. PAMI, vol. 27, no. 6, pp. 998-1003, 2005. [25] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Trans. PAMI, vol. 23, no. 11, pp. 1222-1239, 2001. [26] V. Kolmogorov and R. Zabih, “Computing visual correspondence with occlusions using graph cuts,” in Proc. 8th International Conference on Computer Vision, Vancouver, Canada, July 7-14, 2001, pp. 508-515. [27] V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via graph cuts,” in Proc. 7th European Conference on Computer Vision, Copenhagen, Denmark, May 28-31, 2002, pp. 82-96. [28] S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs, “Temporally consistent reconstruction from multiple video streams using enhanced belief propagation,” in Proc. 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, Oct. 14-21, 2007, pp.1-8. [29] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nistér, “Real-time global stereo matching using hierarchical belief propagation,” in Proc. 17th British Machine Vision Conference, Edinburgh, UK, Sep.4-7, 2006, pp. 989-998. [30] T. Yu, R. Lin, B. Super and B. Tang, “Efficient message representations for belief propagation,” in Proc. 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, Oct. 14-21, 2007, pp.1-8. [31] F. Tombari, S. Mattoccia, L. D. Stefano, and E. Addimanda, “Classification and evaluation of cost aggregation methods for stereo correspondence,” in Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition. CVPR, Florida, USA, Dec. 2008. [32] M. Gerrits and P. Bekaert, “Local stereo matching with segmentation-based outlier rejection,” In Proc. Conf. Computer and Robot Vision, 2006, pp. 66–66. [33] H. Hirschmuller, P. Innocent, and J. Garibaldi, “Real-time correlation-based stereo vision with reduced border errors,” IJCV, vol. 47, pp. 1–3, 2002. [34] C. H. Lin, and Y. J. Syu, “Fast segmentation of porcelain images based on texture features,” Journal of Visual Communication and Image Representation, May, 2010. [35] H. Tamura, S. Mori, and T. Yamawaki, “Texture features corresponding to visual perception,” IEEE Trans. Systems, Man, and Cybernetics, Vol. 8, pp. 460-473, 1978. [36]Middlebury Stereo Datasets, “http://vision.middlebury.edu/stereo/data/“ [37] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured light,” In Proc. IEEE CVPR, vol. 1, Madison, WI, June 2003, pp. 195-202. [38] D. Scharstein and C. Pal, “Learning conditional random fields for stereo,” In Proc. IEEE CVPR, Minneapolis, MN, June 2007. [39] H. Hirschmüller and D. Scharstein, “Evaluation of cost functions for stereo matching,” In Proc. IEEE CVPR, Minneapolis, MN, June 2007.
|