一、中文文獻
1.吳沛軒 (民97)。考量零件生命週期下之汽車售後零組件需求預測與備貨模式。國立台灣大學商學研究所碩士論文,未出版,臺北市。2.林新展 (民94)。汽車保修廠零件需求預測之研究-以xx汽車公司為例。華梵大學工業工程與經營資訊學系碩士論文,未出版,臺北縣。3.范綱彬 (民98)。應用資料探勘於汽車售服零件庫存滯銷因素分析-以C公司為例。國立中央大學工業管理研究所碩士論文,未出版,中壢市。4.黃錫鴻 (民98)。應用灰色理論預測半導體設備消秏性零件需求量。國立中央大學工業管理研究所碩士論文,未出版,中壢市。5.張瀚陽 (民98)。馬可夫鏈蒙地卡羅法於機車零備件需求預測之研究。國立台中技術學院流通管理系碩士論文,未出版,臺中市。6.陽建樑 (民88)。半導體設備備用零件存貨預測模式之研究。國立交通大學工業工程學系碩士班碩士論文,未出版,新竹市。
7.廖人敬 (民94)。筆記型電腦維修零備件需求預測模式之建立。中華大學科技管理研究所碩士論文,未出版,新竹市。8.陳坤茂 (民87)。作業研究(二版)。台北市:華泰圖書文物公司。
9.陳登源 (民94)。管理數學。台北市:雙葉書廊有限公司。
10.戴久永 (民82)。管理數學。台北市:三民書局股份有限公司。
二、英文文獻
1.Aronis, K. P., Magou, I., Dekker, R., & Tagaras, G. (2004). Inventory Control of Spare Parts Using A Bayesian Approach: A Case Study. International Journal of Forecasting 20, 375-387.
2.Boylan, J. E., & Syntetos, A. A., (2007). The Accuracy of A Modified Croston Procedure. International Journal of Production Economics 107(2), 511-517.
3.Bhat, C. R. (2001). Qusai-random Maximum Simulated Likelihood Estimation of the Mixed Multinomial Logit Model. Transportation Research B 35, 677-693.
4.Bhat, C. R. (2003). Simulation Estimation of Mixed Discrete Choice Models Using Randomized and Scrambled Halton Sequences. Transportation Research B 37, 837-855.
5.Chen, F. L., Chen, Y. C., & Kuo, J. Y. (2010). Applying Moving Back-propagation Neural Network and Moving Fuzzy-neuron Network to Predict the Requirement of Critical Spare Parts. Expert Systems with Applications 37, 6695-6704.
6.Ching, W. K., Fung, E. S., & Ng, M. K. (2002). A Multivariate Markov Chain Model for Categorical Data Sequences and its Applications in Demand Predictions. IMA Journal of Management Mathematics 13(3), 187-199.
7.Christos, E., Papadopoulos, & Yeung, H. (2001). Uncertainty Estimation and Monte Carlo Simulation Method. Flow Measurement and Instrumentation 12, 291–298.
8.Croston, J. D. (1972). Forecasting and Stock Control for Intermittent Demands. Operational Research Quarterly 23(3), 289-303.
9.Dekker, R., Kleijn, M. J., & Rooij, P. J. (1998). A Spare Parts Stocking Policy Based on Equipment Criticality. International Journal of Production Economics 56-57, 69-77.
10.Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distribution and Bayesian Restoration of Images. IEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 721-741.
11.Grant, R. M. (1991). The Resource-based Theory of Competitive Advantage:
Implications for Strategy Formulation, California Management Review 33(3), 114-135.
12.Hastings, W. K. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 57(1), 97-109.
13.Huiskonen, J. ( 2001). Maintenance Spare Parts Logistics: Special Characteristics and Strategic Choices, International Journal of Production Economics 71, 125-133.
14.Levén, E., & Segerstedt, A. (2004). Inventory Control with A Modified Croston Procedure and Erlang Distribution. International Journal of Production Economics 90(3), 361-367.
15.Li, S. G., & Kuo, X. (2008). The Inventory Management System for Automobile Spare Parts in A Central Warehouse. Expert Systems with Applications 34, 1144-1153.
16.Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A., & Teller, H. (1953). Equations of State Calculations by Fast Computing Machines. Jounal of Chemical Phsics 21(6), 1087-1091.
17.Papadopoulos, C. E. & Yeung, H. (2001). Uncertainty estimation and Monte Carlo simulation method. FlowMeasurement and Instrumentation 12(4), 291-298.
18.Regattieri, A., Gamberi, M., Gamberini, R., & Manzini, R. (2005). Managing Lumpy Demand for Aircraft Spare Parts. Journal of Air Transport Management 11(6), 426-431.
19.Sani, B. & Kingsman, B. G. (1997). Selecting the Best Periodic Inventory Control and Demand Forecasting Methods for Low Demand Items. Journal of the Operational Research Society 48, 700-713.
20.Syntetos, A. A., (2001). Forecasting for Intermittent Demand, Unpublished Ph.D thesis, Buckinghamshire Chilterns University College, Brunel University.
21.Syntetos, A. A., & Boylan, J. E. (2001).On the Bias of Intermittent Demand Estimates, International Journal of Production Economics 71, 457-466..
22.Syntetos, A. A., & Boylan, J. E. (2005). The Accuracy of Intermittent Demand Estimates, International Journal of Forecasting 21(2), 303-314.
23.Teunter, R., & Sani, B. (2009). On the Bias of Croston’s Forecasting Method. European Journal of Operational Research 194, 177-183.
24.Willemain, T. R., Smart, C. N., Shockor, J. H., & DeSautels, P. A. (1994). Forecasting Intermittent Demand in Manufacturing: A Comparative Evaluation of Croston’s Method. International Journal of Forecasting 10, 529-538.