|
Bellotti, T., & Crook, J. (2009). Support vector machines for credit scoring and discovery of significant features. Expert Systems with Applications, 36(2), pp. 3302-3308. Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees. New York: Chapman & Hall (Wadsworth, Inc.), CRC Press. Castillo, C., Donato, D., Gionis, A., Murdock, V., & Silvestri, F. (2007). Know your neighbors: web spam detection using the web topology. Annual ACM Conference on Research and Development in Information Retrieval, (pp. 423-430). Amsterdam. Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3) . Chen, S.-M., & Shie, J.-D. (2009). Fuzzy classification systems based on fuzzy information gain measures. Expert Systems with Applications, 36, pp. 4517-4522. Chen, Y.-K., Wang, C.-Y., & Feng, Y.-Y. (2010). Application of a 3NN+1 based CBR system to segmentation of the notebook computers market. Expert Systems with Applications, 37(1), pp. 276-281. Dua, Y., Belcher, C., Zhoua, Z., & Ives, R. (2010). Feature correlation evaluation approach for iris feature quality measure. Signal Processing, 90, pp. 1176-1187. El-Yaniv, R., Pechyony, D., & Yom-Tov, E. (2008). Better Multiclass Classification via a Margin-Optimized Single Binary Problem. Pattern Recognition Letters. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27 , pp. 861-874. Finlay, S. (2011). Multiple classifier architectures and their application to credit risk assessment. European Journal of Operational Research, 210, pp. 368-378. Garcı´a-Pedrajas, N., & Ortiz-Boyer, D. (2006). Improving Multiclass Pattern Recognition by the Combination of Two Strategies. IEEE transactions on pattern analysis and machine intelligence, 28(6). Gini, C. (1912). Variabilità e mutabilità. Reprinted in Memorie di metodologica statistica. (S. T. Pizetti E, Ed.) Rome: Libreria Eredi Virgilio Veschi. Hartigan, J. (1975). Clustering Algorithms. New York: John Wiley and Sons. Hayward, J., Alvarez, S. A., Ruiz, C., Sullivan, M., Tseng, J., & Whalen, G. (2010). Machine learning of clinical performance in a pancreatic cancer database. Artificial Intelligence in Medicine, 49, pp. 187-195. Kabira, M. M., Islamb, M. M., & Murase, K. (2010). A new wrapper feature selection approach using neural network. Neurocomputing, 73, pp. 3273-3283. Kim, H.-W., Chan, H. C., & Gupta, S. (2007). Value-based Adoption of Mobile Internet: An empirical investigation. Decision Support Systems, 43(1), pp. 111-126. Kumar, S. P., Sriraam, N., Benakop, P., & Jinaga, B. (2010). Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Systems with Applications, 37, pp. 3284-3291. Kwak, N., & Lee, J.-W. (2010). Feature extraction based on subspace methods for regression problems. Neurocomputing, 73, pp. 1740-1751. Li, S.-T., Kuo, S.-C., & Tsai, F.-C. (2010). An intelligent decision-support model using FSOM and rule extraction for crime prevention. Expert Systems with Applications, 37, pp. 7108-7119. Liu, H., & Motoda, H. (1998). Feature Selection for Knowledge Discovery and Data Mining. Boston: Kluwer Academic. Luh, G.-C., & Chun-Yi, L. (2010). PCA based immune networks for human face recognition. Applied Soft Computing, 11(2), pp. 1743-1752. Lutu, P. E., & Engelbrecht, A. P. (2010). A decision rule-based method for feature selection in predictive data mining. Expert Systems with Applications, 37, pp. 602-609. Maldonado, S., Weber, R., & Basak, J. (2011). Simultaneous feature selection and classification using kernel-penalized support vector machines. Information Science. Information Sciences, 18, pp. 115-128. Ngai, E., Hu, Y., Wong, Y., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50, pp. 559-569. Oztekin, A., Delen, D., & Kong, Z. (2009). Predicting the graft survival for heart–lung transplantation patients: An integrated data mining methodology. International Journal of Medical Informatics, 78, pp. 84-96. Qi, X., & Davison, B. D. (2009). Web page classification: Features and algorithms. ACM Computing Surveys (CSUR), 41(2). Quinlan, J. (1993). C4.5: Programs for machine learning. CA: Morgan Kaufmann. Quinlan, J. (1979). Discovering rules by induction from large collections of examples. In D. Michie (Ed.). (pp. 168-201). Edinburgh: Edinburgh University Press. Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1, pp. 81-106. Sabeti, M., Katebi, S., & Boostani, R. (2009). Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artificial Intelligence in Medicine, 47, pp. 263-274. Shannon, C. E. (1949). A mathematical theory of communication. Bell system technical journal, 27(3), pp. 379-423 & 623-656. Šušteršič, M., Mramor, D., & Zupan, J. (2009). Consumer credit scoring models with limited data. Expert Systems with Applications, 36(3), pp. 4736-4744. Tsai, C.-F. (2009). Feature selection in bankruptcy prediction. Knowledge-Based systems, 22, pp. 120-127. Tsai, C.-F., & Hsiao, Y.-C. (2010). Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches. Decision Support Systems, 50, pp. 258-269. Wang, C.-M., & Huang, Y.-F. (2009). Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data. Expert Systems with Applications, 36, pp. 5900-5908. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J. Y., Q., M. H., McLachlan, G., et al. (2008). Top 10 algorithms in data mining. Knowledge and information systems, 14(1), pp. 1-37. Yanga, W., Lib, D., & Zhua, L. (2011). An improved genetic algorithm for optimal feature subset selection from multi-character feature set. Expert Systems with Applications, 38, pp. 2733-2740. Yen, J. Y., Huang, P. C., & Wan, S. (2009). Modifications on base isolation design ranges through entropy-based classification. Expert Systems with Applications, 36, pp. 4915-4922. Yusta, S. C. (2009). Different metaheuristic strategies to solve the feature selection problem. Pattern Recognition Letters, 30, pp. 525-534.
|