跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/21 17:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧巧梅
研究生(外文):Chiao-Mei Teng
論文名稱:應用質量重置法於可調平面連桿組之最佳動態平衡
論文名稱(外文):Optimum Dynamic Balancing of Adjustable Planar Linkages by Mass Redistribution
指導教授:劉霆劉霆引用關係
指導教授(外文):Tyng Liu
口試委員:李志中鍾添東
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:110
中文關鍵詞:質量重置法平面可調n連桿動態平衡最佳化搖撼力搖撼力矩
外文關鍵詞:dynamic balancingadjustable planar n-bar linkagesmass redistributionoptimizationshaking forceshaking moment
相關次數:
  • 被引用被引用:2
  • 點閱點閱:497
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用質量重置法,針對可視為由四連桿前後串聯而成之串聯型平面可調n連桿,進行動態平衡最佳化,以權衡改善所有調整狀態之各項動力性能。首先,以向量閉迴路方程式分析串聯型平面n連桿之各桿件運動性質,再以牛頓─尤拉運動方程式,由輸出端反向遞迴演算,依序推導各接頭作用力與驅動扭矩,而後,列出可調平面連桿組的動力性能最佳化問題與評估動力性能改善成效之無因次指標,再以固定輸入轉速、固定樞軸位置可調整的一組可調六連桿與可調八連桿為例,分別對於無負載與外加負載的情形,最佳化其動力性能,驗證本研究之可行性。為考慮負載之影響,僅與慣性相關之搖撼力、搖撼力矩,本研究則以更能直接代表機架狀況之機架合力、機架合力矩取代,範例結果顯示,各調整狀態之軸承力、可調樞軸力、驅動扭矩、機架合力與機架合力矩,皆可獲得改善。此外,本研究亦討論質量性質與外加負載以閉迴路為單位往輸入端影響之特性,以及最佳化時考慮負載之重要性,整體而言,若外加負載相對於各慣性力與力矩明顯較大,較難以改變桿件質量性質的方式改善連桿組的動力性能。本研究結果可應用於串聯型平面可調n連桿之質量性質設計,亦探究其動力特性,助於連桿機構動態平衡之研究,並對於日後可調連桿組於實務上之發展有所助益。
This study presents the optimum dynamic balancing of adjustable planar n-bar linkages, which is considered a series of 4-bar linkages, for the trade-off of dynamic performance improvement between every adjustment state by mass redistribution. First, the kinematics is analyzed using the vector loop closure equations. Subsequently, joint forces and driving torque are formulated in sequence using Newton-Euler equations of motion. They are calculated reversely and recursively, and the driving torque is last determined. Then, the optimization problem for improving the dynamic performances is posed. Finally, two examples, including a 6-bar and an 8-bar linkage with constant drive speed and adjustable fixed pivots, are given to demonstrate the feasibility of this study. Two situations which are with and without external loads are involved in both examples. In order to take the effect of external loads into account, the frame status is evaluated by frame force and moment instead of shaking force and shaking moment in this study. The result of examples shows that the bearing forces, adjustable pivot forces, driving torque, frame force, and frame moment are improved in every state. This study could be applied to the design of mass properties of serial planar n-bar linkages, and promote the research on dynamic balancing and the practical application of adjustable linkages.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 可調連桿機構 2
1.2.2 動態平衡 3
1.3 研究目的 5
1.4 論文架構 5
第二章 串聯連桿組之運動分析 7
2.1 位置分析 7
2.2 速度分析 10
2.3 加速度分析 12
第三章 串聯連桿組之動力分析 14
3.1 接頭力與驅動扭矩 14
3.2 搖撼力與搖撼力矩 18
第四章 動力性能之最佳化 21
4.1 設計變數與限制條件 21
4.2 無因次指標與目標函數 22
4.3 程式規劃與驗證 24
第五章 範例與討論 32
5.1 可調六連桿 32
5.1.1 無外加負載 37
5.1.2 具外加負載 43
5.1.3 討論 55
5.2 可調八連桿 58
5.2.1 無外加負載 63
5.2.2 具外加負載 72
5.2.3 討論 91
第六章 結論與未來展望 94
6.1 結論 94
6.2 未來展望 96
參考文獻 97
附錄 程式碼 102
[1]Tao, D. C. and Krishnamoorthy, S., “Linkage mechanism adjustable for variable coupler curves with cusps,” Mechanism and Machine Theory, Vol.13, No. 6, pp. 577-583, 1978.
[2]Tao, D. C. and Krishnamoorthy, S., “Linkage mechanism adjustable for variable symmetrical coupler curves with a double point,” Mechanism and Machine Theory, Vol.13, No. 6, pp. 585-591, 1978.
[3]Ahmad, A. and Waldron, K. J., “Synthesis of adjustable planar 4-bar mechanisms,” Mechanism and Machine Theory, Vol.14, No. 6, pp. 405-411, 1979.
[4]Shimojima, H., Ogawa, K., Fujiwara, A., and Sato, O., “Kinematic synthesis of adjustable mechanisms: Part 1, path generators,” Bulletin of the JSME, Vol. 26, No. 214, pp. 627-632, 1983.
[5]Shimojima, H. and Ogawa, K., “Kinematic synthesis of adjustable mechanisms: Part 2, function generators,” Bulletin of the JSME, Vol. 27, No. 227, pp. 1025-1030, 1984.
[6]Shimojima, H., Iida, K., and Kuwabara, M., “Kinematic synthesis of adjustable mechanisms: Part 3, 6-link dwell mechanisms,” Bulletin of the JSME, Vol. 29, No. 254, pp. 2718-2723, 1986.
[7]Naik, D. P. and Amarnath, C., “Synthesis of adjustable four bar function generators through five bar loop closure equations,” Mechanism and Machine Theory, Vol.24, No. 6, pp. 523-526 ,1989.
[8]Zhou, H., “Synthesis of adjustable function generation linkages using the optimal pivot adjustment,” Mechanism and Machine Theory, Vol.44, No. 5, pp. 983-990, 2009.
[9]Zhou, H., “Dimensional synthesis of adjustable path generation linkages using the optimal slider adjustment,” Mechanism and Machine Theory, Vol.44, No. 10, pp. 1866-1876, 2009.
[10]Chang, C.-F., “Synthesis of adjustable four-bar mechanisms generating circular arcs with specified tangential velocities,” Mechanism and Machine Theory, Vol.36, No. 3, pp. 387-395, 2001.
[11]Zhou, H. and Ting, K.-L., “Adjustable slider-crank linkages for multiple path generation,” Mechanism and Machine Theory, Vol.37, No. 2, pp. 499-509, 2002.
[12]林進水,平面連桿組可調整高階暫停機構之探討,碩士論文,國立台灣大學機械工程學研究所,台北,1994。
[13]Wang, S. J. and Sodhi, R. S., “Kinematic synthesis of adjustable moving pivot four-bar mechanisms for multi-phase motion generation,” Mechanism and Machine Theory, Vol.31, No. 4, pp. 459-474, 1996.
[14]Hong, B. and Erdman, A. G., “A method for adjustable planar and spherical four-bar linkage synthesis,” Journal of Mechanical Design, Vol.127, No. 3, pp. 456-463, 2005.
[15]Pennock, G. R. and Israr, A., “Kinematic analysis and synthesis of an adjustable six-bar linkage,” Mechanism and Machine Theory, Vol.44, No. 2, pp. 306-323, 2009.
[16]Zero-Max: Adjustable Speed Drives, http://www.zero-max.com/adjustable-speed-drives-c-21-l-en.html
[17]Arakelian, V. H. and Smith, M. R., “Shaking force and shaking moment balancing of mechanisms: A historical review with new examples,” Journal of Mechanical Design, Vol.127, No. 2, pp. 334-339, 2005.
[18]Hertrich, F. R., “How to balance high-speed mechanisms with minimum-inertia counterweights,” Machine Design, Vol. 35, No. 6, pp. 160-164, 1963.
[19]Demeulenaere, B., Verschuure, M., Swevers, J., and De Schutter, J., “A general and numerically efficient framework to design sector-type and cylindrical counterweights for balancing of planar linkages,” Journal of Mechanical Design, Vol. 132, No. 1, pp. 011002.1-011002.10, 2010.
[20]Chaudhary, H. and Saha, S. K., “Balancing of four-bar linkages using maximum recursive dynamic algorithm,” Mechanism and Machine Theory, Vol. 42, No. 2, pp. 216-232, 2007.
[21]Chaudhary, H. and Saha, S. K., “Balancing of shaking forces and shaking moments for planar mechanisms using the equimomental systems,” Mechanism and Machine Theory, Vol. 43, No. 3, pp. 310-334, 2008.
[22]Guo, G., Morita, N., and Torii, T., “Optimum dynamic design of planar linkage using genetic algorithms,” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 43, No. 2, pp. 372-377, 2000.
[23]Rigelman, G. A. and Kramer, S. N., “A computer-aided design technique for the synthesis of planar four bar mechanisms satisfying specified kinematic and dynamic conditions,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, No. 3, pp. 263-268, 1988.
[24]Yan, H.-S. and Soong, R.-C., “Kinematic and dynamic design of four-bar linkages by links counterweighing with variable input speed,” Mechanism and Machine Theory, Vol. 36, No. 9, pp. 1051-1071, 2001.
[25]Yan, H.-S. and Soong, R.-C., “An integrated design approach of four-bar linkages with variable input speed,” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 47, No. 1, pp. 350-362, 2004.
[26]Berkof, R. S. and Lowen, G. G., “New method for completely force balancing simple linkages,” Journal of Engineering for Industry, Vol. 91, No. 1, pp. 21-26, 1969.
[27]Balasubramanian, S. and Bagci, C., “Design equations for the complete shaking force balancing of 6R 6-bar and 6-bar slider-crank mechanisms,” Mechanism and Machine Theory, Vol. 13, No. 6, pp. 659-674, 1978.
[28]Arakelian, V. and Dahan, M., “Partial shaking moment balancing of fully force balanced linkages,” Mechanism and Machine Theory, Vol.36, No. 11-12, pp. 1241-1252, 2001.
[29]Arakelian, V. H., Dahan, M., and Smith, M. R., “Complete shaking force and partial shaking moment balancing of planar four-bar linkages,” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol. 215, No.1, pp. 31-34, 2001.
[30]Esat, I. and Bahai, H., “A theory of complete force and moment balancing of planer linkage mechanisms,” Mechanism and Machine Theory, Vol. 34, No. 6, pp. 903-922, 1999.
[31]Arakelian, V. H. and Smith, M. R., “Complete shaking force and shaking moment balancing of linkages,” Mechanism and Machine Theory, Vol. 34, No. 8, pp. 1141-1153, 1999.
[32]Rao, S. S. and Kaplan, R. L., “Optimal balancing of high-speed linkages using multiobjective programming techniques,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 108, No.4 , pp. 454-460, 1986.
[33]Lee, T. W. and Cheng, C., “Optimum balancing of combined shaking force, shaking moment, and torque fluctuations in high-speed linkages,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol.106, No. 2, pp. 242-251, 1984.
[34]Conte, F. L., George,G. R., Mayne, R. W., and Sadler, J. P., “Optimum mechanism design combining kinematic and dynamic-force considerations,” Transactions of ASME Journal of Engineering for Industry, Vol. 95, No. 2, pp. 662-670, 1975.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊