跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡嘉星
研究生(外文):Chia-Hsing Tsai
論文名稱:求解奈維爾-史托克思方程之向量勢能演算式:利用四階準確度局部微分積分法
論文名稱(外文):Solve Vector Potential Formulation of Navier-Stokes Equations: Using Fourth-Order-Accuracy Localized Differential Quadrature Method
指導教授:楊德良楊德良引用關係
口試委員:黃榮山廖清標蔡丁貴劉進賢張始偉許泰文
口試日期:2010-10-09
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:局部微分積分法向量勢能演算式流線方程法奈維爾-史托克思方程四階偏微分方程
外文關鍵詞:Localized differential quadrature methodvector potential formulationstream function formulationNavier-Stokes equationsfourth-order partial differential equations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中為了模擬三維流場問題,我們選擇使用三維不可壓縮奈維爾-史托克思之向量勢能演算式為控制方程。向量勢能演算式為許多不需處理壓力項之解法中的一種,主要是藉著對動量方程取旋度,再以拉普拉斯運算子之向量勢能取代渦度傳輸方程中之渦度奈維爾-史托克思方程可以轉成只存在一種變數之向量勢能的四階偏微分方程(PDE)。與其他不需求解壓力項演算式比較,向量勢能演算法比較簡單,準確,更者,其計算求解比較有效率。對於向量勢能解題所需之邊界條件方面,除了應用已經被提出求解封閉流場問題的邊界條件,我們更進一步利用史托克思理論求解出非封閉流場所需之邊界條件。據我們所知,這是一個創新的突破。為了準確求解四階控制方程,本研究使用四階精度之局部微分積分法(LDQ)求解問題。通過非均勻格網的使用,我們可以有效率求得流場的數值解。為了驗證本數值算則求解四階控制方程的能力,我們利用兩個基準解的問題來檢驗本文所提演算式,包括二維穴室流場,以及二維後向階梯流場的模擬。結果確認本文所提演算式的正確性與可行性。藉著成功的利用本演算式求解二維流場問題,我們更進一步應用本演算式求解三維基準解問題,包括三維穴室流場之模擬,以及三維後向階梯流流場之模擬。結果與基準解吻合,這不但證明本演算法可以用來求解向量勢能演算式,也驗證了本文所提演算法的正確性。我們更進一步藉著數值模擬具體視覺化向量勢能之結構,而通過比較,也可以看出向量勢能與流線方程的不同。總結而言,我們成功的利用四階精確度區域微分積分法求解奈維爾-史托克思方程之向量勢能演算式,並可應用於求解非封閉流場的問題。從以前文獻看來,沒有任何一個文獻曾經提出過相似的想法,可以確信的是,本論文的創新結果對於三維流場的模擬提供了一個可行之方法。

To simulate three-dimensional flow problems in this thesis, the vector potential formulations of three-dimensional incompressible Navier-Stokes are chosen to govern the motion of fluid flow. The vector potential formulation belongs to one of the pressure-free algorithms which are obtained by taking curl to the momentum equations. By replacing the vorticity with Laplacian vector potential to the vorticity transport equations, the Navier-Stokes equations are transformed to fourth-order partial differential equations (PDEs) with one variable---vector potential. Comparing with other pressure-free algorithms, vector potential formulations are simpler and more accurate, and, moreover, the computation is more efficient. To the boundary conditions of vector potential, except the presented defined boundary conditions for confined flow, we further improved the algorithm to through-flow problem by introducing the concept of Stokes'' theorem. To author''s best knowledge, this improvement is groundbreaking. To accurately approximate these fourth-order governing equations, fourth-order-accuracy localized differential quadrature (LDQ) methods are employed. Through adopting the non-uniform mesh grids, the solutions can be obtained efficiently. To examine the ability of the proposed scheme to fourth-order governing equations, two benchmark problems are considered, including two-dimensional cavity flow problems and backward-facing step flow problems. The results show the accuracy and feasibility of the proposed scheme. By the successful implementation of the present scheme to two-dimensional flow problems, the proposed scheme is further employed to solve three-dimensional benchmark problems, including three-dimensional driven cavity flow problems and backward-facing step flow problems. The good performance not only demonstrates that the proposed scheme is able to be employed to solve the vector potential formulation, but also validates the correctness of the presented formulation. Furthermore, we specifically visualized the contour of vector potential by numerical simulation. The comparison between vector potential and stream functions show the difference of these two algorithms. Conclusively, the vector potential formulations of Navier-Stokes equations are successfully used to simulate the three-dimensional fluid motion, especially the fluid flow problems with through-flow. Through the application of the fourth-order-accuracy of localized differential quadrature method, the solutions can be accurately obtained, and the vector potential can be specifically visualized. From the previous literatures, no literature has ever presented the similar idea of this research. It is convinced that the groundbreaking findings in this thesis can provide a feasible way to simulate three-dimensional fluid motion.

Contents
摘要 i
Abstract ii
Contents v
List of Figures x
List of Tables xi
Nomenclature xii
1.Introduction 1
1.1 Motivations and Objectives-------------------------------------------------------------------1
1.2 Literature Reviews------------------------------------------------------------------------------5
1.2.1 Vector Potential--------------------------------------------------------------------------5
1.2.2 Three-Dimensional Stream Functions----------------------------------------------6
1.2.3 Localized Differential Quadrature (LDQ) Method--------------------------------7
1.3 Content of the Thesis---------------------------------------------------------------------9
2. Stream Function Formulations & Vector Potential Formulations of Navier-Stokes
Equations 12
2.1 Preliminaries-----------------------------------------------------------------------------------12
2.2 Two-Dimensional Stream Function Formulation ----------------------------------------13
2.2.1 Governing Equations-------------------------------------------------------------------13
2.2.2 Boundary Conditions------------------------------------------------------------------14
2.3 Three-Dimensional Vector Potential Formulations --------------------------------------15
2.3.1 Governing Equations-------------------------------------------------------------------15
2.3.2 Boundary Conditions------------------------------------------------------------------18
2.4 Three-Dimensional Stream Functions -----------------------------------------------------20
2.4.1 The Concept of Three-Dimensional Stream Functions---------------------------21
2.4.2 The Connection between Vector Potential and Stream Functions--------------23
2.4.3 Some Specific Exceptions---------------------------------------------------------26
3. Localized Differential Quadrature (LDQ) Method 29
3.1 Two-Dimensional Approximations --------------------------------------------------30
3.2 Three-Dimensional Approximations -------------------------------------------------33
3.3 Error Analysis ---------------------------------------------------------------------------36
3.4 Numerical Treatments of Boundary Condition for Fourth-Order PDEs---------40
3.5 The Discretizations of Fourth-Order Localized Differential Quadrature Method
---------------------------------------------------------------------------------------------------43
3.5.1 Discretizations of Two-Dimensional Governing Equation-----------------------43
3.5.2 Discretizations of Three-Dimensional Governing Equations--------------------46
4. Solutions of Stream Function Formulation of Two-Dimensional Incompressible
Navier-Stokes Equations 51
4.1 Driven Cavity Flow Problem ---------------------------------------------------------52
4.2 Backward-Facing Step Flow Problem -----------------------------------------------60
5. Solutions of Vector Potential Formulations of Three-Dimensional Incompressible
Navier-Stokes Equations 66
5.1 Three-Dimensional Square Driven Cavity Flow Problems -----------------------67
5.2 Three-Dimensional Backward-Facing Step Flow Problems ----------------------75
6. Conclusions and Recommendations 92
6.1 Conclusions -----------------------------------------------------------------------------92
6.2 Recommendations ----------------------------------------------------------------------93
Bibliography 95



Bibliography
[1] V. Girault and P. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer: Berlin, 1986.
[2] A. J. Chorin. A Numerical Method for Solving Incompressible Viscous Flow
Problems. J. Comput. Phys., 2:12-26, 1967.
[3] F. H. Harlow and J. E. Welch. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Phys. Fluids, 8:2182-2189, 1965.
[4] A. J. Chorin. Numerical Solution of the Navier-Stokes Equations. Math. Comput.,22:745-762, 1968.
[5] R. I. Issa. Solution of The Implicitly Discretized Fluid Flow Equations by Operator Splitting. J. Comput. Phys., 62:40-62, 1985.
[6] P. F. Galpin, J. P. van Doormaal, and G. D. Raithby. Solution of The Incompressible Mass and Momentum Equations by Application of The Coupled
Equation Line Solver. Int. J. Numer. Methods Fluids, 5:615–625, 1985.
[7] D. C. Lo and D. L. Young. Two-Dimensional Incompressible Flows by Velocity-Vorticity Formulation and Finite Element Method. Chinese J. Mech., 17:13-20, 2001.
[8] M. Ben-artzi, D. Fishelov, and S. Trachtenberg. Vorticity Dynamics and Numerical Resolution of The Incompressible Navier-Stokes Equations. Math. Model. Numer. Anal., 35:313-330, 2001.
[9] R. Kupferman. A Central-Difference Scheme for A Pure Stream Function Formulation of Incompressible Viscous Flow. SIAM. J. Sci., Comput., 23:1-18, 2001.
[10] G. J. Hirasaki and J. D. Hellums. Boundary Conditions on the Vector and
Scalar Potential in Viscous Three-Dimensional Hydrodynamics. Quart. Appl. Math., 28:293-296, 1970.
[11] K. Aziz and J. D. Hellums. Numerical Solution of the Three-Dimensional Equations of Motion for Laminar Natural Convection. Phys. Fluids, 10:314-324, 1967.
[12] A. K. Wong and J. A. Reizes. An Effective Vorticity-Vector Potential Formulation for the Numerical Solution of Three-Dimensional Duct Flow Problems.J. Comput. Phys., 55:98-114, 1984.
[13] A. K. Wong and J. A. Reizes. The Vector Potential in the Numerical Solution of Three-Dimensional Fluid Dynamics Problems in Multiply Connected Regions. J. Comput. Phys., 62:124-142, 1986.
[14] W. E and J. G. Liu. Vorticity Boundary Condition and Related Issues for Finite Difference Schemes. J. Comput. Phys., 124:368-382, 1996.
[15] O. R. Tutty. On Vector Potential-Vorticity Methods for Incompressible Flow Problems. J. Comput. Phys., 64:368-379, 1986.
[16] A. M. Elshakba and T. J. Chung. Numerical Solution of Three-Dimensional
Stream Function Vector Components of Vorticity Transport Equations. Comput. Methods Appl. Mech. Energ., 170:131-153, 1999.
[17] C. S. Yih. Stream Functions in Three-Dimensional Flows. La Houille Blanche, 3:445-450, 1957.
[18] H. Lamb. A Treatise on The Mathematical Theory of The Motion of Fluids.
Cambridge University Press, 1879.
[19] G. J. Hirasaki and J. D. Hellums. A General Formulation of the Boundary Conditions on the Vector Potential in Three-Dimensional Hydrodynamics. Quart. Appl. Math., 26:331-342, 1968.
[20] A. Clebsch. Unber Eine Allgemeine Transformation der Hydrodynamischen
Gleichungen. Crelle, 54:293-312, 1857.
[21] F. Prasil. Technische Hydrodynamik. Juluis Springer Berlin, 1926.
[22] G. D. Mallinson and G. de Vahl Davis. Three-Dimensional Natural Convection in A Box. J. Fluid Mech., 83:1-31, 1977.
[23] D. N. Kenwright and G. D. Mallinson. A 3-D Streamline Tracking Algorithm
Using Dual Stream Functions. In In: Proc. IEEE Visualization, Boston, pages 62-68, 1992.
[24] Z. Li and G. Mallinson. Dual Stream Function Visualization of Flows Fields Dependent on Two Variables. Comput. Visual. Sci., 9:33-41, 2006.
[25] M. S. Greywall. Streamwise Computation of Three-Dimensional Flows Using
Two Stream Functions. J. of Fluids Engineering, 115:233–238, 1993.
[26] J. J. Keller. A Pair of Stream Functions for Three-Dimensional Vortex Flows. Z. angew Math Phys., 47:821-836, 1996.
[27] R. E. Bellman and J. Casti. Differential Quadrature and Long-Term integration. J. Math. Anal. Appl., 34:235-238, 1971.
[28] R. E. Bellman, B.G. Kashef, and J. Casti. Differential Quadrature: A Technique for The Rapid Solution of Nonlinear Partial Differential Equations. J. Comput. Phys., 10:40-52, 1972.
[29] C. Shu. Differential Quadrature and Its Application in Engineering. Springer-Verlag London, 2000.
[30] J. R. Quan and C. T. Chang. New Insights in Solving Distributed System
Equations by The Quadrature Methods -VI. Comput. Chem. Energ., 13:779-
788, 1989.
[31] J. R. Quan and C. T. Chang. New Insights in Solving Distributed System
Equations by The Quadrature Methods -VII. Comput. Chem. Energ., 13:1017-1024, 1989.
[32] C. Shu and B. E. Richard. High Resolution of Natural Convection in A Square Cavity by Generalized Differential Quadrature. In Proc. of 3rd Conf. on Adv. in Numer. Methods in Eng.: Theory and Appl., Swansea, UK, pages 978-985, 1990.
[33] C. Shu and B. E. Richard. Application of Generalized Differential Quadrature to Solve 2-Dimentional Incompressible Navier-Stokes Equations. Int. J. Numer. Method Fluid, 15:791-798, 1992.
[34] C. Shu, B. C. Khoo, and K. S. Yeo. Numerical Solution of Incompressible
Navier-Stokes Equations by Generalized Differential Quadrature. Finite Elem. Anal. Design, 18:83-97, 1994.
[35] D. C. Lo, D. L. Young, K. Murugesan, C. C. Tsai, and M. H. Gou. Velocity-
Vorticity Formulation for 3D Natural Convection in An Inclined Cavity by DQ Method. Int. J. of Heat and Mass Trans., 50:479-491, 2007.
[36] Z. Zong and K. Y. Lam. A Localized Differential Quadrature (LDQ) Method
and Its Application to The 2D Wave Equation. Comput. Mech., 29:382-391, 2002.
[37] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, Inc., third-edition edition, 1998.
[38] J. D. Jackson. From Lorenz to Coulomb and Other Explicit Gauge Transformations. Am. J. Phys., 70:917-928, 2002.
[39] R. A. Usmani and M. J. Marsden. Numerical Solution of Some Ordinary Differential Equations Occurring in Plate Deflection Theory. J. Eng. Math., 9:1-10, 1975.
[40] M. K. Jain, S. R. K. Iyengar, and J. S. V. Saldanha. Numerical Solution of A Fourth-Order Ordinary Differential Equation. J. Eng. Math., 11:373-380, 1977.
[41] H. A. van der Vorst. BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for The Solution of Nonsymmetric Linear Systems. SIAM. J. Sci. and Stat. Comput., 13:631-644, 1992.
[42] U. Ghia, K. N. Ghia, and C. T. Shin. High-Re Solutions for Incompressible
Flow Using The Navier-Stokes Equations and A Multigrid Method. J. Comput.
Phy., 48:387-411, 1982.
[43] M. M. Grigoriev and G. F. Dargush. A Poly-Region Boundary Element Method
for Incompressible Viscous Fluid Flows. Int. J. Numer. Meth. Engng., 46:1127-1158, 1999.
[44] C. Shu, L. Wang, and Y. T. Chew. Numerical Computation of Three-
Dimensional Incompressible Navier-Stokes Equations in Primitive Variable Form by DQ Method. Int. J. Numer. Meth. Fluids, 43:345-368, 2003.
[45] H. C. Ku, R. S. Hirsh, T. D. Taylor, and A. P. Rosenberg. A Pseudospectral
Matrix Element Method for Solution of Three-Dimensional Incompressible
Flows and Its Parallel Implementation. J. Comput. Phys., 83:260-291, 1989.
[46] B. N. Jiang, L. J. Hou, T. L. Lin, and L. A. Povinelli. Least-Squares Finite Element Solutions for Three-Dimensional Backward-Facing Step Flow . Int. J. Comput. Fluid Dyn., 4:1-19, 1995.
[47] P. T. Williams and A. J. Baker. Numerical Simulations of Laminar Flow Over A 3d Backward-Facing Step. Int. J. Numer. Methods Fluids, 24:1159-1183, 1997.
[48] B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schonung. Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech., 127:473-496, 1983.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 23.徐宗潔:〈「一夫不笑是吾憂」——論李漁「風箏誤」的喜劇佈局〉,《中國語文》(1992年5月),頁64-69。
2. 17.李惠綿:〈情欲流動與性別越界——《三個人兒兩盞燈》與《男王后》之觀照〉,《戲劇學刊》第2期(2005年),頁63-84。
3. 13.李元貞:〈李漁的喜劇風格及其曲論的成就(上)〉,《大陸雜誌》(1989年4月),頁24-34。
4. 16.李惠綿:〈李漁劇作中的神異情節〉,《中國文學研究》(1991年5月),頁277-302。
5. 14.李元貞:〈李漁的喜劇風格及其曲論的成就(下)〉,《大陸雜誌》(1989年5月),頁35-46。
6. 1.Dorothy Ko(高彥頤):〈「空間」與「家」——論明末清初婦女的生活空間〉,《近代中國婦女史研究》第3期(1995年8月),頁21-51。
7. 12.呂依嬙:〈機趣、戲謔、新詮釋——論李漁《無聲戲》的性別書寫〉,《中極學刊》(2003年12月),頁91-113。
8. 9.王鐿容:〈傳「奇」乎?傳「教」乎?——[(清)李漁斒輯]《千古奇聞》的編選視域初探〉,《中極學刊》(2008年6月),頁237-265。
9. 6.王建科:〈李漁的科諢理論及其小說戲曲的科諢藝術〉,《東方人文學誌》(1991年12月),頁123-147。
10. 25.張漢良:〈「楊林」故事系列的原型「結構」〉,《中外文學》,3卷11期 ( 1975年4月 ),頁166-179。
11. 26.張繼光:〈明清小曲曲文傳衍之類型及原因析探〉,《興大人文學報》第37期(2006年9月),頁01-46。
12. 30.陳伊婷:〈李漁《閒情偶寄》女性儀容觀探析〉,《北市大語文學報》(2009年12月),頁35-59。
13. 31.陳建華:〈凝視與窺視:李漁〈夏宜樓〉與明清視覺文化〉,《政大中文學報》(2008年6月),頁25-54。
14. 34.彭渰雯:〈在「宰制」和「需求」之外——性消費者論述的女性主義分析〉,《女學學誌:婦女與性別研究》(2005年12月),頁131-175。
15. 38.黃淑祺:〈李漁戲曲《憐香伴》中的女性情誼〉,《世新中文研究集刊》(2009年7月),頁167-193。