|
Bibliography [1] V. Girault and P. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer: Berlin, 1986. [2] A. J. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems. J. Comput. Phys., 2:12-26, 1967. [3] F. H. Harlow and J. E. Welch. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Phys. Fluids, 8:2182-2189, 1965. [4] A. J. Chorin. Numerical Solution of the Navier-Stokes Equations. Math. Comput.,22:745-762, 1968. [5] R. I. Issa. Solution of The Implicitly Discretized Fluid Flow Equations by Operator Splitting. J. Comput. Phys., 62:40-62, 1985. [6] P. F. Galpin, J. P. van Doormaal, and G. D. Raithby. Solution of The Incompressible Mass and Momentum Equations by Application of The Coupled Equation Line Solver. Int. J. Numer. Methods Fluids, 5:615–625, 1985. [7] D. C. Lo and D. L. Young. Two-Dimensional Incompressible Flows by Velocity-Vorticity Formulation and Finite Element Method. Chinese J. Mech., 17:13-20, 2001. [8] M. Ben-artzi, D. Fishelov, and S. Trachtenberg. Vorticity Dynamics and Numerical Resolution of The Incompressible Navier-Stokes Equations. Math. Model. Numer. Anal., 35:313-330, 2001. [9] R. Kupferman. A Central-Difference Scheme for A Pure Stream Function Formulation of Incompressible Viscous Flow. SIAM. J. Sci., Comput., 23:1-18, 2001. [10] G. J. Hirasaki and J. D. Hellums. Boundary Conditions on the Vector and Scalar Potential in Viscous Three-Dimensional Hydrodynamics. Quart. Appl. Math., 28:293-296, 1970. [11] K. Aziz and J. D. Hellums. Numerical Solution of the Three-Dimensional Equations of Motion for Laminar Natural Convection. Phys. Fluids, 10:314-324, 1967. [12] A. K. Wong and J. A. Reizes. An Effective Vorticity-Vector Potential Formulation for the Numerical Solution of Three-Dimensional Duct Flow Problems.J. Comput. Phys., 55:98-114, 1984. [13] A. K. Wong and J. A. Reizes. The Vector Potential in the Numerical Solution of Three-Dimensional Fluid Dynamics Problems in Multiply Connected Regions. J. Comput. Phys., 62:124-142, 1986. [14] W. E and J. G. Liu. Vorticity Boundary Condition and Related Issues for Finite Difference Schemes. J. Comput. Phys., 124:368-382, 1996. [15] O. R. Tutty. On Vector Potential-Vorticity Methods for Incompressible Flow Problems. J. Comput. Phys., 64:368-379, 1986. [16] A. M. Elshakba and T. J. Chung. Numerical Solution of Three-Dimensional Stream Function Vector Components of Vorticity Transport Equations. Comput. Methods Appl. Mech. Energ., 170:131-153, 1999. [17] C. S. Yih. Stream Functions in Three-Dimensional Flows. La Houille Blanche, 3:445-450, 1957. [18] H. Lamb. A Treatise on The Mathematical Theory of The Motion of Fluids. Cambridge University Press, 1879. [19] G. J. Hirasaki and J. D. Hellums. A General Formulation of the Boundary Conditions on the Vector Potential in Three-Dimensional Hydrodynamics. Quart. Appl. Math., 26:331-342, 1968. [20] A. Clebsch. Unber Eine Allgemeine Transformation der Hydrodynamischen Gleichungen. Crelle, 54:293-312, 1857. [21] F. Prasil. Technische Hydrodynamik. Juluis Springer Berlin, 1926. [22] G. D. Mallinson and G. de Vahl Davis. Three-Dimensional Natural Convection in A Box. J. Fluid Mech., 83:1-31, 1977. [23] D. N. Kenwright and G. D. Mallinson. A 3-D Streamline Tracking Algorithm Using Dual Stream Functions. In In: Proc. IEEE Visualization, Boston, pages 62-68, 1992. [24] Z. Li and G. Mallinson. Dual Stream Function Visualization of Flows Fields Dependent on Two Variables. Comput. Visual. Sci., 9:33-41, 2006. [25] M. S. Greywall. Streamwise Computation of Three-Dimensional Flows Using Two Stream Functions. J. of Fluids Engineering, 115:233–238, 1993. [26] J. J. Keller. A Pair of Stream Functions for Three-Dimensional Vortex Flows. Z. angew Math Phys., 47:821-836, 1996. [27] R. E. Bellman and J. Casti. Differential Quadrature and Long-Term integration. J. Math. Anal. Appl., 34:235-238, 1971. [28] R. E. Bellman, B.G. Kashef, and J. Casti. Differential Quadrature: A Technique for The Rapid Solution of Nonlinear Partial Differential Equations. J. Comput. Phys., 10:40-52, 1972. [29] C. Shu. Differential Quadrature and Its Application in Engineering. Springer-Verlag London, 2000. [30] J. R. Quan and C. T. Chang. New Insights in Solving Distributed System Equations by The Quadrature Methods -VI. Comput. Chem. Energ., 13:779- 788, 1989. [31] J. R. Quan and C. T. Chang. New Insights in Solving Distributed System Equations by The Quadrature Methods -VII. Comput. Chem. Energ., 13:1017-1024, 1989. [32] C. Shu and B. E. Richard. High Resolution of Natural Convection in A Square Cavity by Generalized Differential Quadrature. In Proc. of 3rd Conf. on Adv. in Numer. Methods in Eng.: Theory and Appl., Swansea, UK, pages 978-985, 1990. [33] C. Shu and B. E. Richard. Application of Generalized Differential Quadrature to Solve 2-Dimentional Incompressible Navier-Stokes Equations. Int. J. Numer. Method Fluid, 15:791-798, 1992. [34] C. Shu, B. C. Khoo, and K. S. Yeo. Numerical Solution of Incompressible Navier-Stokes Equations by Generalized Differential Quadrature. Finite Elem. Anal. Design, 18:83-97, 1994. [35] D. C. Lo, D. L. Young, K. Murugesan, C. C. Tsai, and M. H. Gou. Velocity- Vorticity Formulation for 3D Natural Convection in An Inclined Cavity by DQ Method. Int. J. of Heat and Mass Trans., 50:479-491, 2007. [36] Z. Zong and K. Y. Lam. A Localized Differential Quadrature (LDQ) Method and Its Application to The 2D Wave Equation. Comput. Mech., 29:382-391, 2002. [37] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, Inc., third-edition edition, 1998. [38] J. D. Jackson. From Lorenz to Coulomb and Other Explicit Gauge Transformations. Am. J. Phys., 70:917-928, 2002. [39] R. A. Usmani and M. J. Marsden. Numerical Solution of Some Ordinary Differential Equations Occurring in Plate Deflection Theory. J. Eng. Math., 9:1-10, 1975. [40] M. K. Jain, S. R. K. Iyengar, and J. S. V. Saldanha. Numerical Solution of A Fourth-Order Ordinary Differential Equation. J. Eng. Math., 11:373-380, 1977. [41] H. A. van der Vorst. BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for The Solution of Nonsymmetric Linear Systems. SIAM. J. Sci. and Stat. Comput., 13:631-644, 1992. [42] U. Ghia, K. N. Ghia, and C. T. Shin. High-Re Solutions for Incompressible Flow Using The Navier-Stokes Equations and A Multigrid Method. J. Comput. Phy., 48:387-411, 1982. [43] M. M. Grigoriev and G. F. Dargush. A Poly-Region Boundary Element Method for Incompressible Viscous Fluid Flows. Int. J. Numer. Meth. Engng., 46:1127-1158, 1999. [44] C. Shu, L. Wang, and Y. T. Chew. Numerical Computation of Three- Dimensional Incompressible Navier-Stokes Equations in Primitive Variable Form by DQ Method. Int. J. Numer. Meth. Fluids, 43:345-368, 2003. [45] H. C. Ku, R. S. Hirsh, T. D. Taylor, and A. P. Rosenberg. A Pseudospectral Matrix Element Method for Solution of Three-Dimensional Incompressible Flows and Its Parallel Implementation. J. Comput. Phys., 83:260-291, 1989. [46] B. N. Jiang, L. J. Hou, T. L. Lin, and L. A. Povinelli. Least-Squares Finite Element Solutions for Three-Dimensional Backward-Facing Step Flow . Int. J. Comput. Fluid Dyn., 4:1-19, 1995. [47] P. T. Williams and A. J. Baker. Numerical Simulations of Laminar Flow Over A 3d Backward-Facing Step. Int. J. Numer. Methods Fluids, 24:1159-1183, 1997. [48] B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schonung. Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech., 127:473-496, 1983.
|