跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡木森
研究生(外文):Mu-Sen Tsai
論文名稱:預鑄式節塊混凝土橋柱之耐震行為研究與應用
論文名稱(外文):Research and Applications of Post-Tensioned Precast Segmental Concrete Bridge Columns for Seismic Regions
指導教授:張國鎮張國鎮引用關係
口試委員:蔡克銓黃世建周中哲蔡益超張荻薇宋裕祺歐昱辰
口試日期:2011-01-13
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:256
中文關鍵詞:衰減自我復衰減自我復衰減自我復衰減自我復衰減自我復衰減自我復衰減自我復衰減自我復衰減自我復衰減自我復
外文關鍵詞:precast segmental bridge columnstrength reduction factorenergy dissipation capacityductility demandunbonded lengthstiffness degrading self-centeringenergy dissipation barisolation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
應用預鑄節塊橋柱工法來縮短橋梁建造時間的方式在歐美各國已逐漸受到重視,預鑄節塊橋柱工法除了可以降低施工期間的意外事件、免除施工期間對交通的中斷及加快建造的速度外,亦可同時確保應有的建造品質及降低橋梁使用年限間的維護費用與建造期間對週遭環境的衝擊。然而目前多數的應用案例大多出現在低地震威脅的地區,因此在過去幾年來本研究進行了許多的相關的預鑄節塊橋柱試驗,且經由實驗研究證明,預鑄節塊橋柱試驗結果符合預期的結果,也發現預鑄節塊的接頭行為即代表整體的行為反應,因此為了進一步瞭解節塊間接頭的行為,新發展出的高性能不鏽鋼鋼筋被使用於預鑄節塊橋柱接頭中以改善橋柱的服務性與施工性,而其優異的消能行為及延展性大大提升了橋柱整體的耐震行為。在多次的實驗觀察發現預鑄節塊橋柱不像傳統橋柱一樣會出現嚴重的撓曲破壞,大部分的變形集中在接頭的打開及旋轉。因此,提出了名為接頭握裹滑移法的方法來分析預鑄節塊橋柱的行為。而經過實驗與分析的比較發現所提出的方法可準確地預測出橋柱的行為。此外本研究亦提出一套簡化的數值模擬方法,利用多種元件的組合來模擬預鑄節塊橋柱的行為,因此可輕易應用於現有的分析軟體中並進行非線性動力分析。
之後更將預鑄節塊節塊橋柱應用於隔震設計,藉由隔震的方式延長橋梁週期因而達到降低上部結構所受到之地震力,如此不僅達到兼顧橋梁安全及快速建造的設計目標,更因為地震力的大幅的減低,橋柱受到破壞的機率降低,因而延長了橋柱的生命週期。對於隔震預鑄節塊橋柱而言,隔震支承在結構系統中提供額外的消能以降低位移,隔震器的位移量只要在設計位移範圍內,其不會產生破壞,但橋柱一旦進入非線性,位移越大破壞也越嚴重。然而預鑄節塊橋柱因其自我復位特性,就算有大非線性位移,損傷也比傳統橋柱小許多。因此節塊橋柱搭配隔震支承的好處在於即使隔震支承位移用盡,預鑄節塊橋柱還可變形到3%,損傷都還很小。換言之,此系統可容納很大的位移卻損失輕微,可自我復位。
預鑄節塊混凝土橋柱由於消能容量顯著低於傳統橋柱,在同地震擾動下,欲達到相同的韌性需求時,地震力折減係數需較傳統橋柱小。本研究利用單自由度非線性動力分析,以及36個國內外地震歷時,探討適用於預鑄節塊混凝土橋柱的地震力折減係數。分析過程中,傳統混凝土橋柱與預鑄節塊橋柱地震行為,分別以Takeda遲滯模型以及勁度衰減自我復位(SDSC)遲滯模型模擬。研究結果證實,為達相同韌性需求,預鑄節塊橋柱地震力折減係數需比傳統橋柱的折減係數小。增加消能容量或降低韌性需求,將使預鑄節塊橋柱的地震力折減係數趨近於傳統橋柱。根據SDSC模型與Takeda模型所得地震力折減係數的比例,以及現行規範地震力折減係數的公式,本研究提出預鑄節塊橋柱地震力折減係數的建議值。
最後整理一系列的研究結果提出一套適合純鋼腱預鑄節塊橋柱(C0 Series)以及具自動復位及消能行為之預鑄節塊橋柱(C5 Series)的設計流程。


Precast concrete bridge construction has been proved to be an efficient solution in accelerating bridge construction and minimizing traffic disruption. However, due to concerns with the seismic performance of such type of construction, its application in seismic regions is limited. Therefore, many experimental and analytical studies were conducted. From their results, the seismic behavior of precast segmental bridge column possessed excellent ductility capacity that was adequate for use in regions of high seismicity. In order to improve the serviceability and constructability, a new material named high performance (HP) steel reinforcing bar was applied into the joint of precast segmental bridge column as energy dissipation bar and the cyclic behavior of precast segmental concrete bridge columns with high performance (HP) steel reinforcing bars as energy dissipation (ED) bars were investigated. The HP steel reinforcing bars are characterized by higher strength, greater ductility, and superior corrosion resistance compared with the conventional steel reinforcing bars. Three large-scale columns were tested. One was designed with the HP ED bars and two with the conventional ED bars. The HP ED bars were fully bonded to the concrete. The conventional ED bars were fully bonded to the concrete for one column, whereas unbonded for a length to delay fracture of the bars and to increase ED for the other column. Test results showed that the column with the HP ED bars had greater drift capacity, higher lateral strength, and larger ED than that with fully bonded conventional ED bars. The column with unbonded conventional ED bars achieved the same drift capacity and similar ED capacity as that with the HP ED bars. All the three columns showed good self-centering capability with residual drifts not greater than 0.4% drift. An analytical model referred to as joint bar-slip rotation method for pushover analysis of segmental columns with ED bars is proposed. The model calculates joint rotation from the slip of the ED bars from two sides of the joint. Good agreement was found between analytical predictions and the envelope responses of the three columns
In addition, in order to reduce the seismic demand of precast segmental bridge column, seismic isolation system was applied to precast segmental bridge column and a large scale experimental study was conducted. The test results showed that isolated precast segmental bridge column system can reduce the acceleration of superstructure effectively. Therefore, reducing the shear demand and avoiding the damage of substructure. The benefit of using isolated precast segmental bridge column is that even isolation displacement demand is more than its capacity, precast segmental bridge column can deform more than 3% drift without sever damage. In other words, isolated precast segmental bridge column system has a capacity of large deformation and self-centering.
The energy dissipation capacity of precast segmental bridge column is smaller than that of traditional bridge column. Under the same earthquake excitation, the strength reduction factor for precast segmental bridge column should be smaller than that for traditional one to achieve the same ductility demand. In this study, nonlinear dynamic SDOF analysis was involved, and 36 different ground motions were used in this analysis to investigate the proper strength reduction factor for precast segmental bridge column. In the analysis, bilinear plastic (BP) hysteretic model and stiffness degrading self-centering (SDSC) hysteretic model were used to present the behavior of traditional bridge column and precast segmental one, respectively. According to the result, it was proved that the strength reduction factor of precast segmental bridge column is smaller than that for traditional one. The ratio of strength reduction factor for SDSC model with different energy dissipation capacity and different ductility demand to that for traditional one was meshed up to modify the strength reduction factor formula provided in current seismic design code. Finally, a rational design method was proposed and verified.


第一章、前言 1
1.1 研究背景與目的 1
1.2 內容簡介 3
第二章、文獻回顧 5
2.1相關案例及試驗 5
2.2 設計概念 15
2.2.1 預鑄節塊橋柱系統 15
2.2.2 韌性接頭 16
2.2.3 消能行為 18
2.2.4 後拉預力裝置 21
2.2.5 橋柱斷面 22
2.2.6 剪力容量 25
2.2.7 剪力榫的設置 25
2.3相關理論分析模型介紹 26
2.3.1 遲滯模型 26
2.3.2 三維有限元素分析模型 28
2.3.3 簡易分析模型 30
第三章、數值分析 35
3.1 簡化分析模型(接頭握裹滑移法) 35
3.1.1 背景 35
3.1.2 本研究提出基於鋼筋握裹滑移之側推分析模型 37
3.1.3接頭握裹滑移法(Joint bar-slip method)分析步驟 40
3.2相對消能容量比 44
3.2.1背景 44
3.2.2分析目的 45
3.2.3有限元素模型 45
3.2.4分析參數 47
3.2.5分析結果與討論 48
3.2.6參數分析結果與討論 51
3.3數值模型 52
3.3.1 純鋼腱預鑄節塊橋柱之簡化數值模型 52
3.3.2 自動復位之預鑄節塊橋柱之簡化數值模型 53
3.3.3 隔震預鑄節塊橋柱之簡化數值模型 56
3.3.4 模型驗證 57
第四章、預鑄節塊橋柱搭配高性能鋼筋試驗研究 61
4.1 背景與目的 61
4.2 試驗規劃及說明 61
4.3 試驗裝置及方法 64
4.3.1 加載系統 64
4.3.2 量測系統 65
4.3.3 試驗方法 68
4.4 試體製作及組裝 69
4.4.1 試體材料 69
4.4.2 試體製作 71
4.4.3 試體組裝 75
4.5 結果討論與分析 81
4.5.1 實驗觀察與比較 81
4.5.2高性能鋼筋的行為表現及去握裹的效用 87
4.5.3自動復位的能力 88
4.6 小結 88
第五章、隔震預鑄節塊橋柱系統試驗研究 90
5.1 背景與目的 90
5.2 試驗規劃及說明 90
5.2.1試體規劃 90
5.2.2 單向反覆載重試驗 93
5.2.3 雙向擬動態試驗 94
5. 3試驗裝置及試驗方法 95
5.3.1 加載系統 95
5.3.2 量側系統 96
5.3.3 試驗方法 98
5.4 試體製作及組裝 100
5.5 結果討論與分析 103
5.5.1 反覆載重實驗結果 103
5.5.2 擬動態實驗結果 107
5.5.3 數值模型驗證 123
5.5.4 實際模擬橋梁乾縮潛變的方式之可行性及建議 137
5.5.5 獨立單元分析與整體分析的差異性 140
5.5.6 隔震預鑄節塊橋柱考慮乾縮潛變時之數值模擬 142
5.5.7 乾縮潛變的影響 150
5.5.8 預鑄節塊橋柱強度的影響 157
5.5.9 隔震預鑄節塊橋梁與傳統預鑄節塊橋梁的比較 164
5.6 小結 168
第六章、地震力折減係數及相關耐震設計 171
6.1 背景與目的 171
6.2單自由度非線性動力分析 173
6.2.1單自由度系統 173
6.2.2遲滯模型 174
6.2.3採用的地震歷時 175
6.2.4分析參數 177
6.2.5分析步驟 177
6.3結果與討論 178
6.3.1地震力折減係數分析結果 178
6.3.2地震力折減係數的比例 179
6.3.3規範地震力折減係數建議修正公式 181
6.4 韌性容量及相關設計 184
6.4.1韌性容量的確保 184
6.4.2橋柱側向降伏位移估計 185
6.4.3韌性接頭消能鋼筋脫層長度 186
6.5相對消能容量比及相關設計 187
6.6 小結 188
第七章、預鑄節塊橋柱設計例 190
7.1設計流程 190
7.1.1純鋼腱橋柱設計流程 190
7.1.2含消能鋼筋預鑄節塊混凝土橋柱設計流程 192
7.2計算公式 194
7.2.1橋柱週期 194
7.2.2側向地震力 195
7.2.3相對消能容量比 196
7.2.4估計降伏位移 196
7.2.5消能鋼筋脫層長度 196
7.3設計範例 197
7.3.1基本資訊 197
7.3.2純鋼腱橋柱設計範例 199
7.3.3含消能鋼筋預鑄節塊橋柱設計範例 201
7.3.4使用高性能不銹鋼鋼筋為消能鋼筋之預鑄節塊橋柱設計範例 204
7.4設計結果檢核 207
7.4.1純鋼腱橋柱設計結果檢核 207
7.4.2含消能鋼筋預鑄節塊混凝土橋柱設計結果檢核 208
7.4.3設計結果比較 210
7.5小結 211
第八章、結論與未來展望 212
8.1結論 212
8.2未來展望 216
參考文獻 217
附錄、預鑄節塊接頭試驗 222



[1] Federal Highway Administration (FHWA) (2006). “Prefabricated bridge elements and systems.” < http://www.fhwa.dot.gov/bridge/prefab/index.htm>.
[2] Muller, J. M. and Barker, J. M. (1985). “Design and construction of Linn Cove Viaduct,” PCI Journal, Vol. 30, No.5, 38-53.
[3]Billington, S. L., Barnes, R. W., and Breen, J. E. (1999). “A precast segmental substructure system for standard bridges.” PCI Journal.,Vol. 44, No. 4, 56-73.
[4]Figg, L. and Pate, W.D. (2004). “Precast concrete segmental bridges-America’s beautiful and affordable icons,” PCI Journal, Vol. 49, No.5, 26-38.
[5]NJDOT. (2005). “Route 35 Victory Bridge overview.”
< http://www.state.nj.us/transportation/commuter/roads/rt35victory/>
[6] American Segmental Bridge Institute (ASBI) (2004). Segments Newsletter, Vol. 45.
[7]Structure Magazine, (2006), National Council of Structural Engineers Associations.
[8] American Segmental Bridge Institute (ASBI) (2006). Segments Newsletter, Vol. 48.
[9] 台灣公路工程月刊專輯橋梁工程類,(1990),台灣省公路局。
[10] Wing-Pin Kwan, Sarah L. Billington. (2003) “Unbonded Posttensioned Concrete Bridge Piers.I:Monotonic and Cyclic Analyses”, Journal of Bridge Engineering, Vol. 8.
[11] Wing-Pin Kwan, Sarah L. Billington. (2003) “Unbonded Posttensioned Concrete Bridge Piers. II:Seismic Analyses”, Journal of Bridge Engineering, Vol. 8
[12] Hewes, J. T., and Priestley, M. J. N. (2002). "Seismic design and performance of precast concrete segmental bridge columns." Rep. No. SSRP-2001/25, University of California, San Diego, San Diego, CA.
[13] Lin, J.-C., and Mo, Y.-L. (2000). “The shear transfer behavior of precast prestressed hollow rectangular bridge columns”. M. S. Thesis, Dept of Civil Engineering, National Cheng Kung University, Tainan, Taiwan (in Chinese).
[14] 丘惠生、張國鎮、王瑞禎,(2000),「財團法人中華顧問工程司委託研究專案,預鑄節塊橋墩設計分析與工法研究(一)」,財團法人台灣營建研究院。
[15] Chou, C. C., and Chen, Y. C. (2006). “Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strands.” Earthquake Engneering and Structural Dynamics, Vol. 35, No. 2, 159-175.
[16] Chang, K. C., Loh, C. H., Chiu, H. S., Hwang, J. S., Cheng, C. B., and Wang, J. C. (2002). “Seismic behavior of precast segmental bridge columns and design methodology for applications in Taiwan.” Taiwan Area National Expressway Engineering Bureau, Taipei, Taiwan. (In Chinese).
[17] 王瑞禎,(2005),「預鑄節塊橋柱試驗及行為研究」,博士論文,國立台灣大學土木工程學研究所。
[18] 張國鎮、George C. Lee、歐昱辰、王柄雄、蔡木森,(2006),「台灣與美國合作後拉式預鑄節塊橋柱試驗研究」,年度成果報告,財團法人國家實驗研究院國家地震工程研究中心。
[19] Raynor, D. J., Lehman, D. E., and Stanton, J. F. (2002). “Bond-slip response of reinforcing bars grouted in ducts.” ACI Structural Journal, Vol. 99, No. 5, 568-576.
[20] AASHTO. (2004). AASHTO LRFD Bridge Design Specifications, 3rd Edition, Washington, D.C.
[21] Jeong-Ho Moon, and Ned H. Burns. (1997) “FLEXURAL BEHAVIOR OF MEMBER WITH UNBONDED TENDONS. I:THEORY”, Journal of Structural Engineering, Vol. 123, No. 8.
[22] Adachi, M. and Nishiyama, N. (2000). “Idealization of hysteretic behavior of prestressed concrete members and assemblages considering bond-slip between prestressing steel and concrete.” Proceeding, 12th World Conference on Earthquake Engineering, Auckland, NZ, Paper No. 2259.
[23] Matsumoto, E. E., Waggoner, M. C., Sumen, G., Kreger, M. E., Wood, S. L., and Breen, J. E. (2001). “Development of a precast bent cap system.” Report No. FHWA/TX-0-1748-2, Center for Transportation Research Bureau of Engineering Research, the University of Texas at Austin, T.X.
[24] Eligehausen, R., Bertero V. V., and Popov E. P. (1983). “Local bond stress-slip relationships of deformed bars under generalized excitations.” Report No. EERC 83/23. Earthquake Engineering Research Center, University of California, Berkeley, CA.
[25] Wing-Pin Kwan, Sarah L. Billington. (2003) “Unbonded Posttensioned Concrete Bridge Piers.I:Monotonic and Cyclic Analyses”, Journal of Bridge Engineering, Vol. 8
[26] Priestley, M. J. N., Seible, F., and Calvi, G. M. (1996). Seismic design and retrofit of bridges, Wiley, New York.
[27] Mo, Y.-L., Wong, D. C., and Maekawa, K. (2003). “Seismic performance of hollow bridge columns.” ACI Structural Journal, Vol. 100, No. 3, 337-348.
[28] 交通部,(2008),「公路橋梁耐震設計規範」。
[29] Constantin Christpoulos, (2002) ”Seismic Response of Self-Centering Hysteretic
Systems”, Earthquake Engineering and Structure Dynamic, Vol. 31, 1131-1150.
[30] 許智堡,(2006),「預力預鑄節塊橋柱之遲滯模型與地震作用下之反應」,碩士論文,國立交通大學土木工程學研究所。
[31] Lee, L. H., Han, S. W., and Oh, Y. H.,(1999) “Determination of ductility factor considering different hysteretic models,” Earthquake Engineering and Structural Dynamics, Vol. 28, No. 9, 957-977.
[32] Seo, C.-Y., and Sause, R. (2005). “Ductility demands on self-centering systems under earthquake loading,” ACI Structural Journal, Vol. 102, No. 2, 275-285.
[33] Yu-Chen Ou, (2007). “Precast Segmental Post-Tensioned Concrete Bridge Piers For Seismic Regions,” Doctoral dissertation, Department of Civil, Structural, and Environmental Engineering, University of New York at Buffalo.
[34] Mander, J. B., Priestley, M. J. N., and Park, R. (1988). “Theoretical stress-Strain model for confined concrete.” Journal of Structural Engeering, Vol. 114, No. 4, 1804-1826.
[35] Pampanin, S., Priestley, M. J. N., and Sritharan, S. (2001). “Analytical modeling of the seismic behavior of precast concrete frames designed with ductile connections.” Journal of Earth. Eng., Vol. 5, No. 3, 329-367.
[36] Zhou, Y., Ou, Y.-C., Lee, G. C., and O''Connor, J. “Mechanical and low-cycle fatigue behavior of stainless steel rebars for earthquake engineering applications,” Earthquake Spectra. (in review).
[37] Schnell, R. E., and Bergmann, M. P. (2007). “Improving tomorrow''s infrastructure: extending the life of concrete structures with solid stainless steel reinforcing bar,” Proceedings of 3rd NYC Bridge Conference, New York, NY, U.S.A., Aug. 27-28.
[38]Sezen, H., and Setzler, E. (2008). “Reinforcement slip in reinforced concrete columns,” ACI Structural Journal, Vol. 105, No. 3, 280-289.
[39]Zhou, Y., Ou, Y.-C., Lee, G. C., and O''Connor, J. (2008). “Low-cycle fatigue behavior of stainless steel reinforcing bars.” Proceedings, 6th National Seismic Conference on Bridges and Highways, Charleston, SC, U.S.A.
[40] Ou, Y.-C., Chiewanichakorn, M., Aref, A. J., and Lee, G. C. (2007). “Seismic
performance of segmental precast unbonded post-tensioned concrete bridge
columns.” Journal of Structural Engineering, Vol. 133, No. 11, 1636-1647.
[41]Ou, Y.-C., Tsai, M.-S., Chang, K.-C., and Lee, G. C. (2010). “Direct displacement-based design of precast segmental unbound post-tensioned concrete bridge column with energy dissipation bar.” 2010 Taiwan and Japan bridge and structural engineering workshop, Taipei, Taiwan.
[42] 交通部,(2001),「公路橋梁設計規範」,幼獅文化。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top