跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡亭宜
研究生(外文):Ting-Yi Chien
論文名稱:結構自體調諧質量阻尼系統之耐震行為研究
論文名稱(外文):Seismic Behavior of Structures with Building Mass Damper System
指導教授:張國鎮張國鎮引用關係
口試委員:謝紹松林裕淵蔡孟豪
口試日期:2011-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:174
中文關鍵詞:自體調諧質量阻尼器調諧質量阻尼器中間樓層隔震敏感度分析設計方法數值分析
外文關鍵詞:Building Tuning Mass DamperTuned Mass Dampermid-isolation systemsensitivity analysisdesign processnumerical analysis
相關次數:
  • 被引用被引用:6
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In a mid-story isolated building, the isolation system is incorporated into the mid-story rather than the base of the building. The effectiveness of mid-story isolation design in reducing seismic demands on the superstructure above the isolation system has been verified in many researches. It was also disclosed, however, that the significant seismic responses at the substructure below the isolation system and a significant phase lag between the seismic responses of the superstructure and substructure should be paid more attention, especially when the isolation system is installed at a higher story or the substructure is not sufficiently stiff.
On the contrary, observed from the past researches and practical applications, it was evident that the adoption of tuned mass damper (TMD) design can effectively enhance the seismic-resistant capability, in addition to the wind-resistant capability, of a building, in particular of a high-rise building. Generally, the additional tuned absorber mass is much smaller than the building itself mass and is installed on the top of the building, namely the main structure or the substructure thereafter. Although an increase of the tuned absorber mass results in a better dynamic control performance for the main structure, it also leads to an immense increase of the damping demand for TMD design.
Therefore, in this thesis, the feasibility of the incorporation of the TMD design concept into a mid-story isolated building, namely building mass damper (BMD) design thereafter, is numerically studied. The stiffness and damping of the BMD system can be provided by the mid-story isolation system composed of seismic isolation bearings and viscous dampers. Most importantly, the superstructure can serve as a tuned absorber mass such that the size limitation of the conventional TMD design method can be overcome. A simplified three-lumped-mass structural model in which the flexibility effects of the superstructure and substructure are comprehensively considered is used to represent the dynamic characteristics and seismic behavior of a building with BMD design. The objective function to determine the optimum BMD design parameters is that, the damping ratios of the three translation modes of the simplified structural model are essential and should be very close. The influences of the interested parameters of the simplified structural model on BMD design are thoroughly investigated through a sensitive analysis manner. Based on the sensitive analysis results, it is seen that the BMD design concept is doable with a very acceptable damping ratio demand. Furthermore, the suitable occasions to apply mid-story isolation design, TMD design and BMD design are defined explicitly. A preliminary BMD design procedure with an iteration process is also proposed. Both a scaled down test model and a practical structural model (i.e. National Center for Research on Earthquake Engineering) with different design methods (including conventional design, mid-story isolation design, TMD design and BMD design) are applied to the numerical study. The numerical study results indicate that the BMD design method, which possesses two predominant modes, is really effective for the seismic protection of both the superstructure (tuned mass structure) and substructure (main structure).


誌謝 I
摘要 III
ABSTRACT V
目錄 VII
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 研究背景與目的 1
1.2 研究內容與架構 2
第二章 文獻回顧 9
2.1 前言 9
2.2 基本理論 9
2.3 文獻回顧 14
第三章 可行性分析 21
3.1 理論推導 21
3.2 參數敏感度分析 26
第四章 振動台試驗規劃研究 75
4.1 縮尺結構試體介紹 75
4.2 數值模擬 76
4.2.1 BMD系統設計流程 76
4.2.2 BMD結構模型模擬 78
4.3 地震歷時分析結果 78
4.3.1 位移歷時反應 79
4.3.2 加速度歷時反應 80
4.4 試驗元件設計流程 81
4.4.1橡膠支承墊 81
4.4.2液態黏性阻尼器 85
第五章 實際結構裝設BMD之耐震性能評估 129
5.1 實例背景 129
5.2 初步設計與分析 130
5.3 地震歷時數值模擬結果 130
5.4 小結 132
第六章 結論與未來展望 169
參考文獻 172


1.Chang, K. C., Hwang, J. S., Chan, T. C., Tau, C. C. and Wang, S. J., “Application, R&D and Design Rules for Seismic Isolation and Energy Dissipation Systems for Buildings and Bridges in Taiwan,” Proceedings of the 10th World Conference on Seismic Isolation, Energy Dissipation and Active Vibrations Control of Structures, Istanbul, Turkey, May 28-31, 2007.
2.張國鎮、黃震興、蘇晴茂、李森枏,”結構消能減震控制及隔震設計”,民國93年。
3.黃震興,"隔震技術應用的現階段概觀與展望",土木工程技術,第一期,pp.45-61,1995。
4.陶其駿,厲娓娓,隔震建築應用與使用管理通俗化手冊之研擬,內政部建築研究所研究報告,2006。
5.洪忠憙&小林正人,"Vibratory Characteristics and Earthquake Response of Mid-Story Isolated Buildings", 明治大學科學技術研究所紀要39(12)︰97-114,2000。
6.洪忠憙&小林正人,"Analytical Study of Modal Coupling Effect on Mid-story Isolation System by Eigen Value Analysis and Random Vibration Analysis(固有値解析およびランダム応答解析による中間層免震構造のモード連成作用効果の分析),日本建築學會大會學術講演梗概集(北海道) ,pp. 21167-21168, 2004.。
7.陳玫君,中間層隔震與速度型阻尼器配合隔震建築物之地震靜動力分析,國立台灣大學土木工程學研究所碩士論文,蔡益超教授指導,民國九十三年六月。
8.蔡宜真,中間層隔震縮尺建築物振動台試驗研究,國立台灣大學土木工程學研究所碩士論文,張國鎮教授指導,民國九十六年一月。
9.江春琴,中間樓層隔震建築之耐震行為研究,國立台灣大學土木工程學研究所碩士論文,張國鎮教授指導,民國九十六年六月。
10.林孟慧,中間樓層隔震結構之模態耦合效應研究,國立台灣大學土木工程學研究所碩士論文,張國鎮教授指導,民國九十七年六月。
11.洪瑩真,中間樓層隔震建築物之試驗、設計與監測研究,國立台灣大學土木工程學研究所碩士論文,張國鎮教授指導,民國九十九年六月。
12.Den Hartog, J. P.(1956). Mechanical Vibrations, 4th edition, McGraw-Hill,New York
13.McNamara, R. J.(1977). “Tuned Mass Dampers for Buildings”, Journal of the Structural Division, ASCE, Vol. 103, pp. 1785-1798
14.Luft, R. W.(1979). “Optimal Tuned Mass Dampers for Buildings”, Journal of the Structural Division, ASCE, Vol. 105, pp.2766-2772.
15.Rainer, J. H., and Swallow, J. C.(1986). “Dynamic Behavior of a Gymnasium Floor”, Canadian Journal of Civil Engineering, Vol. 13, pp270-277
16.Thornton, C. H., Cuoco, D. A., and Velivasakis, E. E. (1990). “Taming Structural Vibrations”, Civil Engineering, Vol. 60, pp. 57-59.
17. Setareh, M., and Hanson, R. D. (1992). “Tuned Mass Dampers for Balcony Vibration Control”, Journal of Structural Engineering, ASCE, Vol. 118, pp.723-740
18.Lin, C. C., Hu, C. M., Wang, J. F., and Hu, R. Y. (1994). “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, Vol. 17, pp.367-376.
19.Asami, T., Wakasono, T., Kameoka, K., Hasegawa, M. and Sekiguchi, H.(1991). “Optimum design of dynamics absorbers for a system subjected to random excitation” JSME International Journal, Series III, Vol. 34, pp218-226
20.Fujino, Y. and Abe, M. (1993). “Design formulas for tuned mass dampers based on a perterbation technique”, Earthquake Engineering and Structural Dynamics, Vol. 22, pp.833-854
21.Xu, Y. L., and Kwok, K. C. S. (1994). “Semianalytical method for parameteric study of tuned mass dampers”, Journal of Structural Engineering, ASCE, Vol. 120, pp.747-764
22.Hsiang-Chuan Tsai and Guan-Cheng Lin (1993), “Optimum Tuned-Mass Dampers for Minimizing Steady-State Response of Support-Excited and Damped Systems,"Journal of Earthquake Engineering and Structural Dynamics, Vol. 23, 957-973
23.Sadek, F., Mohraz, B., Taylor, A. W., and Chung, R. M.. ‘A method of estimating the parameters of tuned mass dampers for seismic applications’. Earthquake Eng. struct. dyn. 26(6), 617-637 (1997)
24.建築物耐震規範及解說,內政部,2005 年7 月


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top