(3.235.108.188) 您好!臺灣時間:2021/03/03 20:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴一寬
研究生(外文):I-KUAN Lai
論文名稱:蒸餘曲線圖與沸點排序在反應蒸餾程序設計上的應用
論文名稱(外文):The Application of Residue Curve Map and Boiling Point Ranking to the Design of Reactive Distillation Processes
指導教授:黃孝平黃孝平引用關係
指導教授(外文):Hsiao-Ping Huang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:132
中文關鍵詞:反應性蒸餾蒸餘曲線圖最適化年總成本乙酸乙酯二元酸測試工廠反應性分隔內壁蒸餾塔
外文關鍵詞:reactive distillationresidue curve mapoptimizationTACethyl acetatediacidpilot plantreactive divided wall column
相關次數:
  • 被引用被引用:1
  • 點閱點閱:540
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蒸餘曲線圖與沸點排序在有關反應蒸餾的程序設計與操作上相當重要。為了進一步瞭解它們所扮演的角色,本文以多項酯化製程的設計與操作加以呈現並予討論。
首先,本研究針對type II乙酸乙酯反應性蒸餾 [Y.T. Tang,Y.W. Chen, H.P. Huang, C.C.Yu, S.B. Huang, M.J. Lee, Design of reactive distillations for acetic acid esterification with different alcohols, AIChE J. 51 (2005) 1683–1699] 試驗工廠為對像,利用蒸餘曲線圖說明起始填充組成的重要性並提出開車流程,確保得到高純度產品。透過多次的開車測試,提出此系統開車程序,並透過蒸餘曲線圖說明起始填充組成的重要性。
觀察到type II乙酸乙酯與乙酸異丙酯反應性蒸餾設計[Tang et al,. 2003, 2005 and Lai et al., 2007] ,其組成分布中具有再混合效應,把組成分佈進行座標轉換投影在四成份蒸餘曲線圖,其曲線皆為彎曲。利用蒸餘曲線圖,針對原有的乙酸乙酯與乙酸異丙酯反應性蒸餾架構設計,提出反應性分隔內壁蒸餾塔熱整合設計,消除再混合效應,達到省能目的。故在此大膽假設,若組成軌跡可以盡可能縮短,便能節能。故利用反應性分隔內壁蒸餾塔熱整合設計應用於乙酸乙酯與乙酸異丙酯酯化反應系統。所有塔板結構、進料條件與產品規格皆與先前共沸進料反應性蒸餾系統相同,且最適化能源消耗,比較先前共沸進料反應性蒸餾系統,進一步可分別節省11.8%與24%能源消耗。並結果利用蒸餘曲線圖驗證假設。
延續甲醇與己二酸酯化反應性蒸餾設計,針對甲醇與戊二酸兩階段酯化反應性蒸餾進行設計,利用沸點排序做為設計基礎,並提出與己二酸甲酯系統不同點,製程上稍與己二酸二甲酯系統不同。
為了回收己內醯胺製程中的廢酸,包含二元酸(己二酸與戊二酸)與羥基己酸,利用反應性蒸餾系統進行甲醇與混合酸酯化系統設計,其產物己二酸二甲以及羥基己酸甲酯為己二醇氫化反應之反應物,而戊二酸二甲酯為戊二醇氫化反應之反應物。以戊二酸酯化反應性蒸餾設計設計基礎,應用於真實工廠設計,由於羥基己酸於80°C以上將會裂解,故此設計將採低溫製程,最後針對動態控制進行進料流料擾動測試。


The residue curve map and boiling point ranking are the starting points of systematic methods for design of reactive distillation processes. In this study, we develop the esterification systems’ design and operation to know more about the role which the residue curve map and boiling point ranking play.
Ethyl and isopropyl acetates are important organic solvents which have been widely used in the production of varnishes, ink, synthetic resins and adhesive agents. In this study, the production of high-purity ethyl acetate (EtAc) using reactive distillation (RD) is studied experimentally in a pilot-scale plant. The objectives are two folds: (1) to realize the type-II RD process [Y.T. Tang, Y.W. Chen, H.P. Huang, C.C.Yu, S.B. Huang, M.J. Lee, Design of reactive distillations for acetic acid esterification with different alcohols, AIChE J. 51 (2005) 1683–1699] for EtAc production with a pilot plant, a complex two-column configuration with liquid phase split, (2) to study the initial charges to the column holdups and a start-up procedure for continuous production via residue curve map.
According to type II system [Tang et al., 2003, 2005 and Lai et al., 2007] studies, the rectifying section of both RD columns has prominent remixing phenomenon. Observing the transformation of composition profile projected on quaternary residue curve map, the composition trajectory is crooked. Based on their results, designs incorporating reactive divided wall column (RDWC) is proposed. In this work, we make a hypothesis that when the turning disappears or the composition trajectory becomes shorter, it would save energy. To find out the benefit in term of energy saving, the feed conditions, throughput, product specification and column tray setup are all the same with conventional reactive distillation design. The final simulation result shows that the energy savings for EtAc and IPAc systems are 11.8% and 24%, respectively. Furthermore, the residue curve maps (RCM) in the two systems show that the composition trajectory is shorter than those of the conventional RD designs. In these EtAc and IPAc systems, we also demonstrate beneficial and successful RDWC designs to deal with conventional design consisting of RD with a decanter.
Follow the design of adipic acid (AA) esterication (Hung, S. B. Design and Control of Reactive Distillation Systems: One-Stage and Two-Stage Esterification. Ph.D. Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, 2006.), a new complete reactive distillation process for two-stage reaction systems (glutaric acid (GA) esterifications with methanol) is explored. Similarities and differences between these two flowsheets have been identified. Both the acid esterification reactions are catalyzed heterogeneously by acidic ionexchange resin and reaction kinetics can be described using quasihomogeneous model. The UNIFAC group contribution method predicts suitable NRTL parameters for calculating liquid activity coefficients. Results show that the plantwide flowsheets need a large recycle ratio for the light key reactants and ester products could be achieved with a purity of 99 mol %. A systematic design procedure for the complete flowsheets is presented, and the optimum operating conditions of the overall systems are studied to minimize the total annual cost while meeting the product specifications.
Then, follow above design experience; there is an extension to acid mixture (glutaric acid (GA), adipic acid (AA) and 6-hydroxyhexanoic acid (HHA)) esterification with inert. The acid mixture is the byproduct of caprolactam production. The esterification products of acid mixture are the raw material of pentanediol and haxanediol. Due to thermal limitation of HHA, the acid mixture esterification system design should be based on FSA, a lower temperature process, to prevent the decomposition of HHA. Finally, dynamic control is proposed.


致謝 I
Abstract III
摘要 VII
List of Figures XI
List of Tables XV
1 Introduction 1
1.1 Overview 1
1.2 Literature review 2
1.3 Residue curve map 7
1.4 Coordinate transformation 11
1.5 Motivation 14
1.6 Dissertation organization 15
2 Production of High-purity Ethyl Acetate Using Reactive Distillation: Experimental and Start-up Procedure 17
2.1 Overview 17
2.2 Process descriptions 18
2.3 Experimental 21
2.4 Start-up procedure and experimental results 26
2.4.1 Start-up procedure 29
2.4.2 Experimental results 34
2.4.3 Effect of initial holdup charges on the start-up 41
2.4.4 Product purity 42
2.4.5 Simulation versus experimental results 43
2.5 Conclusion 46
3 Design of Reactive Divided Wall Column for Ethyl Acetate and Isopropyl Acetate System 49
3.1 Overview 49
3.2 Phase equilibrium and reaction kinetics 52
3.2.1 Phase equilibrium 52
3.2.2 Reaction kinetics 55
3.3 Design concept 56
3.4 Result 60
3.5 Conclusion 68
4 Reactive Distillation for Two-Stage Reaction Systems: Glutaric Acid Esterification 69
4.1 Overview 69
4.2 Reaction kinetics 70
4.3 Thermodynamics 71
4.3.1 Vapor pressure. 71
4.3.2 Phase equilibrium. 73
4.4 Process flowsheet and steady-state design 77
4.4.1 Possible configurations of reactive distillation column (RDC) 77
4.4.2 Complete flowsheet. 79
4.4.3 Design procedure. 82
4.5 Discussion 89
4.6 Conclusion 92
5 Extension to Acid Mixture Esterification with Inert 93
5.1 Overview 93
5.2 Reaction kinetics 93
5.3 Thermodynamics 95
5.3.1 Vapor pressure 95
5.3.2 Phase equilibrium 96
5.4 Process Flowsheet and Steady-State Design 99
5.5 Temperature control of acid mixture esterification system 104
5.5.1 Inventory related control 105
5.5.2 Quality control and stoichiometric balance 106
5.5.3 Selection of temperature control trays 107
5.5.4 Control structure and controller design 109
5.5.5 Performance 110
5.6 Conclusion 111
6 Conclusion 113
Nomenclature 115
Reference 119
Appendix A 127
Appendix B 130


[1]Tang, Y.T.; Chen, Y.W.; Huang, H.P.; Yu, C.C., Hung, S.B.; Lee, M.J., “Design of reactive distillations for acetic acid esterification with different alcohols,” AIChE J., 51, 1683–1699, (2005)
[2]Lai, I.K.; Hung, S.B.; Hung, W.J.; Yu, C.C.; Lee, M.J.; Huang, H.P., “Design and control of reactive distillation for ethyl and isopropyl acetates production with azeotropic feeds,” Chem. Eng. Sci., 62, 878–898, (2007)
[3]Hung, S. B., “Design and Control of Reactive Distillation Systems: One-Stage and Two-Stage Esterification,” Ph.D. Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, (2006).
[4]Doherty, M. F.; Malone, M. F., “Conceptual Design of Distillation Systems,” McGraw-Hill: New York, (2001).
[5]Sundmacher, K.; Kienle, A., “Reactive Distillation: Status and Future Directions,” Wiley: Weinheim, (2003).
[6]Taylor, R.; Krishna, R., “Modelling Reactive Distillation,” Chem. Eng. Sci., 55, 5183-5229, (2000)
[7]Doherty M.F.; Buzad G., “Reactive distillation by design,” Trans Inst Chem Eng Part A., 70, 448–458, (1992)
[8]Agreda, V. H.; Partin, L. R.; Heise, W. H., “High Purity Methyl Acetate via Reactive Distillation,” Chem. Eng. Prog., 86:2, 40-46, (1990)
[9]Keyes D.B., “Esterification processes and equipment,” Ind. Eng. Chem., 24, 1096–1103, (1932)
[10]Kenig, E. Y.; Bader, H.; Gorak, A.; Bessling, B.; Adrian, T.; Schoenmakers, H. “Investigation of Ethyl Acetate Reactive Distillation Process,” Chem. Eng. Sci., 56, 6185-6193, (2001)
[11]Hanika, J.; Kolena, J.; Smejkal, Q., “Butyl Acetate via Reactive DistillationsModelling and Experiment,” Chem. Eng. Sci., 54, 5202-5209, (1999)
[12]Gangadwala, J.; Kienle, A.; Stein, E.; Mahajani, S., “Production of Butyl Acetate by Catalytic Distillation: Process Design Studies,” Ind. Eng. Chem. Res., 43, 136-143, (2004)
[13]Luo, H. P.; Xiao, W. D. A Reactive Distillation Process for a Cascade and Azeotropic Reaction System: Carbonylation of Ethanol with Dimethyl Carbonate. Chem. Eng. Sci. 2001, 56, 403.
[14]Jacobs, R.; Krishna, R., “Multiple Solutions in Reactive Distillation for Methyl Tert-Butyl Ethers Synthesis,” Ind. Eng. Chem. Res., 32, 1706-1709, (1993)
[15]Sundmacher, K.; Hoffmann, U., “Multiple Reactions in Catalytic Distillation Processes for the Production of the Fuel Oxygenates MTBE and TAME: Analysis by Rigorous Model and Experimental Validation,” Chem. Eng. Sci., 54, 2839-2847, (1999)
[16]Ung, S.; Doherty, M. F., “Synthesis of Reactive Distillation Systems with Multiple Equilibrium Chemical Reactions,” Ind. Eng. Chem. Res., 34, 2555-2565, (1995)
[17]Ung, S.; Doherty, M. F., “Vapor-Liquid Phase Equilibrium in Systems with Multiple Chemical Reactions,” Chem. Eng. Sci., 50, 23-48, (1995)
[18]Wu, K.C.; Lin, C.T., US Patent No.5,998,658, (1999)
[19]Kenig, E.Y.; B‥ader, H.; G’orak, A.; Beling, B.; Adrian, T.; Schoenmakers, H., “Investigation of ethyl acetate reactive distillation process,” Chem. Eng. Sci. 56, 6185–6193, (2001)
[20]Kl‥oker, M.; Kenig, E.Y.; G’orak, A.; Markusse, A.P.; Kwant, G.; Moritz, P., “Investigation of different column configurations for the ethyl acetate synthesis via reactive distillation,” Chem. Eng. Process, 43, 791–801, (2004)
[21]Reepmeyer, F.; Repke, J.U.; Wozny, G., “Time optimal start-up strategies for reactive distillation columns,” Chem. Eng. Sci., 59, 4339–4347, (2004)
[22]Kolena, K.; Lederer, J.; Mor’avek, P.; Hanika, J.; Smejkal, Q.; Sk’ala, D., US Patent No.6,693,213, (2004)
[23]Petlyuk, F. B.; Platonov, V. M.; Slavinskii, D. M., “Thermodynamically Optimal Method for Separating Multicomponent Mixture,” Int. Chem. Eng, 5(3), 555-561 (1965)
[24]Fidkowski, Z.; Krolikowski, L., “Minimum Energy Requirements of Thermally Coupled Distillation Systems,” AIChE J, 33(4), 643-653, (1987)
[25]Triantafyllou, C.; Smith, R., “The Design and Optimisation of Fully Thermally Coupled Distillation Columns,” Trans ICHemE, A70, 118-132, (1992)
[26]Mutalib, M.I. Abdu.; Zeglam, A.O.; Smith, R., “Operation and control of dividing wall distillation columns. Part 2: Simulation and pilot plant studies using temperature control,” Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, Part A, 76(nA3), 319-334, (1998)
[27]Mutalib, M.I. Abdul.; Smith, R., “Operation and control of dividing wall distillation columns. Part 1: Degrees of freedom and dynamic simulation,” Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, Part A, 76(nA3), 308-318, (1998)
[28]Amminudin, K. A.; Smith, R., “Design and Optimization of Fully Thermally Coupled Distillation Columns. Part 1: Preliminary Design and Optimization Methodology,” Trans ICHemE, A79, 701-713, (2001)
[29]Kim, Y.H., “A new fully thermally coupled distillation column with postfractionator,” Chemical Engineering and Processing, 45(n4), 254-263, (2006)
[30]Sotudeh, N.; Shahraki, B.H., “A method for the design of divided wall columns,” Chemical Engineering and Technology, 30(n9), 1284-1291, (2007)
[31]Sotudeh, N.; Shahraki, B.H., “Extension of a method for the design of divided wall columns,” Chemical Engineering and Technology, 31(n1), 83-86, (2008)
[32]Bravo-Bravo, C.; Segovia-Hernandez, J.; Gutierrez-Antonio, C.; Duran, A.; Bonilla-Petriciolet, A.; Briones-Ramirez, A., “Extractive Dividing Wall Column: Design and Optimization” Ind. Eng. Chem. Res., 49, 3672–3688, (2010)
[33]Wang, S.J.; Wong, David S.H., “Controllability and energy efficiency of a high-purity divided wall column,” Chemical Engineering Science, 62(n4), 1010-1025, (2007)
[34]Wang, S.J.; Lee, H.Y.; Ho, J.H.; Yu, C.C.; Huang, H.P.; Lee, M.J., “Plantwide Design of Ideal Reactive Distillation Processes with Thermal Coupling,” Ind. Eng. Chem. Res., 49, 3262–3274, (2010)
[35]Hernandez, S; Sandoval-Vergara, R; Barroso-Munoz, F; Murrieta-DuenaS, R; Hernandez-Escoto, H; Segovia-Hernandez, J., “Reactive dividing wall distillation columns: Simulation and implementation in a pilot plant,” Chemical Engineering and Processing: Process Intensification, 48(1), 250-258, (2009)
[36]Mueller, I.; Kenig, Eugeny Y., “Reactive distillation in a dividing wall column: Rate-based modeling and simulation,” Industrial and Engineering Chemistry Research, 46(n11), 3709-3719, (2007)
[37]Bumbac G.; Ene A.; Isopescu R.; Toma A., “Process simulation of reactive distillation in dividing wall column for ETBE synthesis process,” Chemical Engineering Transactions, 18, 487-492, (2009)
[38]Aspen Plus, Release 11.1, Aspen Technology, Inc., Cambridge, MA, USA, (2001).
[39]Mueller, I.; Kenig, Eugeny Y., “Reactive distillation in a dividing wall column: Rate-based modeling and simulation,” Industrial and Engineering Chemistry Research, 46(n11), 3709-3719, (2007)
[40]Ryan, P.; Doherty, M., “Design/optimization of ternary heterogeneous azeotropic distillation sequences,” AIChE J., 35(10), 1592-1601, (1989)
[41]Pham, H.N.; Doherty, M., “Design and synthesis of heterogeneous azeotropic distillations—II. Residue curve maps,” Chemical Engineering Science, 45, 1837-1843, (1990)
[42]Hung, S.B.; Tang, Y.T.; Chen, Y.W.; Lai, I.K.; Hung, W.J.; Huang, H.P.;. Lee, M.J.; Yu, C.C., “Control of different reactive distillation configurations for acetic acid esterification,” AIChE J., 52, 1423–1440, (2006)
[43]Tsai, Y. T., “Kinetic Behavior of Heterogeneous Esterification of Glutaric Acid with Methanol,” M.S. Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, (2005)
[44]Lee, M. J.; Lai, C. H.; Wang, Z. B.; Lin, H. M., “Vapor-Liquid Equilibrium of Mixtures Containing Adipic Acid, Glutaric Acid, Dimethyl Adipate, Dimethyl Glutarate, Methanol, and Water,” J. Chem. Eng. Data, 52, 1291-1296, (2007)
[45]Hayden, J. G.; O’Connell, J. P., “A Generalized Method for Predicting Second Virial Coefficients,” Ind. Eng. Chem. Process Des. DeV., 14, 209-216, (1975)
[46]Fredenslund, A.; Gmehling, J.; Rasmussen, P., “Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method,” Elsevier: Amsterdam, (1977)
[47]Tung, S. J.; Yu, C. C., “Effects of Relative Volatility Ranking to the Design of Reactive Distillation,” AIChE J., 53, 1278-1297, (2007)
[48]Lee, P. J., “Kinetics Study on Synthesis of Methyl Valerate via Heterogeneous Catalytic Reaction,” M.S. Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, (2008)
[49]Chan, K. W., “Kinetic Behavior of Heterogeneous Esterification of Adipic Acid with Methanol,” M.S. Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, (2004)
[50]Chang, J.W., Yu, C.C., “The relative gain for non-square multivariable system.” Chemical Engineering Science, 45, 1309–1323, (1990)
[51]Sakizlis, V., Perkins, J.D., Pistikopoulos, E.N., “Recent advances in optimization-based simultaneous process and control design,” Computers & Chemical Engineering, 28, 2069–2086, (2004)
[52]Georgiadis, M.C., Schenk, M., Pistikopoulos, E.N., Gani, R., “The interations of design, control and operability in reactive distillation systems,” Computers & Chemical Engineering, 26, 735–746, (2002)
[53]Shen, S.H., Yu, C.C., “Use of relay-feedback test for automatic tuning of multivariable systems,” AIChE J., 40, 627–646 (1994)
[54]Bristol, E.H., “On a new measure of interaction for multivariable process control,” IEEE Transactions on Automatic Control AC11 (1), 133-134, (1966)
[55]Douglas, J.M., “Conceptual Design of Chemical Process,” New York: McGraw-Hill, (1988)
[56]Elliott T.R., Luyben W.L., “Quantitative assessment of controllability during the design of a ternary system with two recycle streams,” Ind. Eng. Chem. Res., 35, 3470-3479, (1996)
[57]Hangx, G., Kwant, G., Maessen, H., Markusse P., Urseanu I., “Reaction kinetics of the esterification of ethanol and acetic acid towards ethyl acetate,” Deliverable 22, Intelligent Column Internals for Reactive Separations (INTINT). Technical Report to the European Commission, (2001)
[58]Gadewar, S.B.; Malone, M.F.; Doherty, M.F., “Feasible region for a countercurrent cascade of vapor,” AIChE J., 48, 800–814, (2002)
[59]Horsley, L.H., “Azeotropic Data—III, Advances in Chemistry Series No.116,” American Chemical Society, Washington, DC, USA, (1973)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔