(3.236.214.19) 您好!臺灣時間:2021/05/10 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳憲昌
研究生(外文):Hsien-Chang Wu
論文名稱:碳批覆鋁電流收集板之合成與應用
論文名稱(外文):Synthesis and Application of Al Current Collector with a Conformal Carbon Coating
指導教授:李克強李克強引用關係
指導教授(外文):Eric Lee
口試委員:吳乃立徐振哲吳溪煌黃炳照
口試日期:2011-06-07
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:163
中文關鍵詞:鋁箔化學氣相沉積法貼合性電流收集板表面阻抗蝕刻鋁箔
外文關鍵詞:Al foilChemical vapor depositionAdhesionCurrent collectorsurafce resistanceEtched-Al foil
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來由於能源危機訊號響起,油價迅速高漲,環境保護意識抬頭,人們對於全球空氣品質惡化以及二氧化碳排放量逐年增加所引起的溫室效應感到憂慮,因此對潔淨能源與無污染環境的需求遽增。發展混合式電動車(Hybrid Electric Vehicle;簡稱HEV)或純電動車蔚為趨勢.油電混合車用電池最重要的是電池要能夠提供瞬間大電流充電和放電的能力。大電流放電除了可透過電池設計與正負極材料選用,正負極的導電基板,或俗稱收集板(current collector),也是關鍵材料之一。

傳統電極技術製造方法是將活性物質之漿料添加黏著劑(binder),再將漿料披覆在電流收集板上經乾燥而得,其中碳材被廣泛地使用於電化學儲能元件的電極製備。最近五年,國外對鋁箔電流收集板表面技術改良方面己獲致相當成就,例如將鋁箔經過傳統蝕刻方式提高鋁箔表面積再塗佈一層碳材當活性物質,或是利用合金、電鍍方式在直流收集板鍍一層過渡金屬。這些方法所得到的碳披覆鋁或過渡金屬披覆鋁,往往因為基材和活性物的緊貼度不夠,在長期充放電時造成活性物質從基板上剝落,進而造成電池壽命減少問題。近期文獻顯示,電極中高電阻抗經常發生在披覆層與收集板間的介面;在應用於電動車高功率充放電的條件下,不僅造成不可逆的能量損耗,並限制最大輸出功率。為了克服此一問題,近年來研發趨勢是在收集板上先披覆上一層黏著性高、且高導電性的碳膜。

本論文中,利用化學氣相沉積法合成碳膜批覆鋁直流板,經由3M 膠帶測試和XPS分析得知,此碳膜不但具有很強的貼合性,且鋁箔上表面具有連續氧化層將被碳層所取代,經由CV和EIS證實,此碳覆鋁直流收集板之導電性及接觸面積均大於鋁箔,因此將此收集板應用於超高電容器及鋰離子二次電池,以提升整體的能量及功率密度,舉例來說,使用碳批覆鋁直流收集板可提升鋰鐵磷電極 3~7倍的電容量(在1~10 C充放電速度下)比起未表面處理的鋁箔且在高速充放電下(5 C),大大提升電性使用的壽命。

Due to the alarming energy crisis emerging in recent years, the demand for high efficiency energy-saving transportation vehicles is soaring nowadays. Extra requirement to meet the environment standard is also highly desirable. One of the major progress is the development of Hybrid Electric Vehicle (HEV), which relies on a high-quality battery with capability to generate and release huge current within a very short time scale. Hence a high performance current collector is essential to the success of the battery.

In the typical electrode configuration, the layer containing the active material was supported on a metallic current collector, especially carbon material coating current collectors. Although the state of the art synthesis technologies for modification of the current collector was quite accomplish abroad such as etching method, electroplating method, carbon coating by sol-gel method and so on, the adhesion of carbon film or transition metal on the current collector was too weak to fall. The interface between the current collector and the active layer imposes additional resistance to charge transfer within the electrode. This resistance source has not received sufficient attention in the literature, presumably because it was not considered of significance for the low-power Li-ion electrode materials in the past. However, as described above, the state-of-the-art material synthesis technologies may have reduced the ionic and electronic resistances associated with the active materials to certain point that they become competitive to the other resistance sources. Thus, the significance of the electronic resistance at the active layer/current collector interface is worthy of careful re-examination.

In this thesis, Al foil with a conformal carbon coating was synthesized by chemical vapor deposition using methane gas. According to 3M tape test and XPS data, C-E-Al foil has a strong adhesion of carbon layer, and the insulating oxide layer is replaced by the carbon layer. CV and EIS data show it not only possesses a higher conductivity but also more contact area than un-treated Al foil. For example, the use of the C-coated current collector not only remarkably increases the power-delivering capability, by 3~7-fold based on different comparison criteria, of the LFPO electrode, but also greatly enhances its cycle stability under high C rate (5 C).

摘要……… I
Abstract…… III
Table of Contents V
List of Figures VIII
List of Tables XIV
Chapter 1. Introduction 1
Chapter 2 Paper Review 4
2-1 Introduction to Current Collectors 4
2-2 Introduction to Supercapacitors 14
2-2-1 Introduction to Electrochemical Capacitors 14
2-2-2 Development of Electrochemical Capacitors 17
2-3 Introduction to Lithium-Ion Batteries 21
2-4 Introduction to LiFePO4 Cathode Material 27
2-5 Introduction to Anode material 33
Chapter 3 Experimental 50
3-1 Chemicals 50
3-2 Synthesis of Carbon Coated Aluminum Foil 52
3-3 Analyses and Characterizations 56
3-3-1 Adhesion Test 56
3-3-2 Surface Analysis(EA, XPS) 56
3-3-3 Morphology Observation 58
3-4 Cell-Assembling Process 59
3-4-1 Electrode- Fabricating Process of Supercapacitors 60
3-4-2 Electrode- Fabricating Process of Cathode Electrode for Lithium Ion Batteries 60
3-4-3 Electrode- Fabricating Process of Anode Electrode for Lithium Ion Batteries 61
3-5 Electrochemical Characterizations 62
3-5-1 Cyclic Voltammetry (CV) 62
3-4-1 Electrochemical Impedance Spectroscopy and Charge/Discharge Test 62
Chapter 4. Synthesis and Investigation of Carbon Coating Al Current Collectors 64
4-1 Introduction 64
4-2 Adhesion Test Analysis 67
4-3 Morphology Observation 74
4-4 XPS Analysis 76
4-5 Electrochemical Properties 80
4-6 Summary 86

Chapter 5. High-Performance Carbon-Based Supercapacitors for Application of Carbon Coating Al Current Collectors 87
5-1 Introduction 87
5-2 Activated Carbon Fiber 89
5-3 Electrochemical Analyses 92
5-4 Summary 105
Chapter 6. Using Carbon-Coated Aluminum Current Collector for Enhanced Power Performance of Anode and Cathode electrodes 106
6-1 Introduction 106
6-2 Electrochemical Properties of Cathode Electrode 108
6-3 Electrochemical Properties of Anode Electrode 120
6-4 Summary 128
Chapter 7 Conclusions 129
References 131
Appendix A 154
I. The Discharge Curves of LFPO Electrodes Versus Potential 154
Appendix B 155
I. The Morphologies of Carbon Coated Al and Cu Current Collectors 155
II. Electrochemical Analyses 156


1.C. Peng, L. Yang, Zhang. Zhengxi, Tachibana. Kazuhire, Yang. Yong, Zhao. Shiyong, Peng. Chengxin, "Investigation of the Anodic behavior of Al Current Collector in Room Temperature Ionic Liquid Electrolytes", Electrochimica Acta, v53, p 4764, 2008.
2.N. Terada, T. Yanagi, S. Arai, M. Yoshikawa, K. Ohta, N. Nakajima, A. Yanai, N. Arai, "Development of Lithium Batteries for Energy Storage and EV Applications", Journal of Power Sources, v100, p80, 2001.
3.C. Iwakura, Y. Fukumoto, H. Inoue, S. Ohashi, S. Kobayashi, H. Tada, "Electrochemical Characterization of Various Metal Foils as a Current Collector of Positive Electrode for Rechargeable Lithium Batteries", Journal of Power Sources, v68, p 301, 1997.
4.L. Bai, B. E. Conway, "Complex Behavior of Al Dissolution in Non-aqueous Medium as Revealed by Impedance Spectroscopy", Journal of the Electrochemical Society, v137, p 3737, 1990.
5.S. S. Zhang, T. R. Jow, "Aluminum Corrosion in Electrolyte of Li-Ion Battery", Journal of Power Sources, v109, p 458, 2002.
6.K. Kanamura, T. Umegaki, S. Shiraishi, M. Ohashi, Z. I. Takehara, " Electrochemical behavior of Al current Collector of Rechargeable Lithium Batteries in Propylene Carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N", Journal of the Electrochemical Society, v149, p 185, 2002.
7.J. F. Scanlon, J. Kruger, P. J. Moran, "Anodic Behavior of Iron in Anhydrous Dimethoxyethane and Passivation by Solvent Electropolymerization", Journal of the Electrochemical Society, v140, p 1268, 1993.
8.R. G. Kelly, P. J. Moran, J. Kruger, C. Zollman, E. Gileadi, "Passivity of Fe in Anhydrous Propylene Carbonate", Journal of the Electrochemical Society, v136, p 3262, 1989.
9.E. M. Shembel, R. D. Apostolova, A. S. Strizhko, A. I. Belosokhov, A.F. Naumenko,V.V. Rozhkov, "Problems of Corrosion and Other Electrochemical Side Processes in Lithium Chemical Power Sources with Non-aqueous Electrolytes", Journal of Power Sources, v54, p 421, 1995.
10.L. Campanella, G. Pistoia, Journal of the Electrochemical Society, v118, p 1905, 1971.
11.C. Xillin, G. Konstantinos, G. Juchen, B. adam, W.Chunsheng, G. Reza, C. James N, "A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus-Structure Current Collector", Advanced Functional Materials, v21, p 380, 2011.
12.G. Zotti, G. Schiavon, S. Zecchin, "Anodic Dissolution of Titanium in Acetonitrile to Ti (IV) Perchlorate and Subsequent Reductive Electrodeposition of Amorphous TiO2 Films", Journal of the Electrochemical Society, v146, p 637, 1999.
13.K. Kanamura, S. Toriyama, S. Shirashi, Z.-I. Takehara, "Studies on Electrochemical Oxidation of Nonaqueous Eectrolytes Using in Situ FTIR Spectroscopy ", Journal of the Electrochemical Society, v142, p 1383, 1995.
14.I. Geoffroy, P. Willmann, K. Mesfar, B. Carre, D. Lemordant, "Electrolytic Characteristics of Ethylene Carbonate-Diglyme-Based Electrolytes for Lithium Batteries", Electrochimica Acta, v45, p 2019, 2000.
15.T. Sotomura, T. Tatsuma, N. Oyama, "Organosulfur Polymer Cathode with a High Current Capability for Rechargeable Batteries", Journal of the Electrochemical Society, v143, p 3152, 1996.
16.Kanamura, Kiyoshi, Umegaki, Takao, Shiraishi, Soshi, Ohashi, Masahiro, Takehara, Zen-ichiro, "Electrochemical Behavior of Al Current Collector of Rechargeable Lithium Batteries in Propylene Carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N", Journal of the Electrochemical Society, v149, p 185, 2002.
17.A. H. Whitehead, and M. Schreiber, "Current Collectors for Positive Electrodes of Lithium-Based Batteries", Journal of the Electrochemical Society, v152 p A2105, 2005.
18.Seung-Taek, Sasaki, Yusuke, Sakurada, Shuhei, Sun, Yang-Kook, Yashiro, Hitoshi, "Electrochemical Behavior of Current Collectors for Lithium Batteries in Non-Aqueous Alkyl Carbonate Solution and Surface Analysis by ToF-SIMS", Electrochimica Acta, v55, p 288, 2009.
19.A. W. Swanson, H. H. Uhlig, "The Initial Oxidation Rates of Single-Crystal Copper and the Effect of Gaseous Pretreatment", Journal of the Electrochemical Society, v118 , p 1325, 1971.
20.A. W. Swanson, H. H. Uhlig, "Effect OF Gaseous Pretreatment on Oxidation of Iron", Journal of the Electrochemical Society, v121, p 1551, 1974.
21.T. Horvath, H. H. Uhlig, "Critical Potentials for Pitting Corrosion of Ni, Cr-Ni, Cr-Fe, and Related Stainless Steels", Journal of the Electrochemical Society of Japan, v11, p 791, 1968.
22.A. K. Vijh, "Electrochemistry, Power Sources and Energy Science", Journal of Power Sources, v5, p 145, 1980.
23.I. Sanghi ad, S. Visranathan, Electrochimica Acta, v7, p 567, 1962.
24.J. O. M. Bockris, Lj. V. Minevski, "On the Mechanism of the Passivity of Aluminum and Aluminum alloys", Journal of Electroanalytical Chemistry, v349, p 375, 1993.
25.J. Kelly, M. Zheng, H. Deligianni, B.C. Baker-O’Neal, Jr. C. Cabrial., "Electrodeposition of Cu on Ta-Based Layer", Journal of the Electrochemical Society, v154, p 406, 2007.
26.J. Reid, C. Gack, S.J. Hearne, "Cathodic Depolarization Effect during Cu Electroplating on Patterned Wafers", Electrochemical and Solid-State Letters, v6, p 26, 2003.
27.X. Feng, "Formation of the copper nanoparticles in porous silicon by electroplating", v6, p 563, 2004.
28.C. Hu, "Effects of Deposition Modes on the Microstructure of Copper Deposits from an Acidic Sulfate Bath", Surface and Coatings Technology, v176, p 75, 2003.
29.Ke. Fu-Sheng, Huang. Ling, Cai. Jin-Shu, Sun. Shi-Gang, "Electroplating Synthesis and Electrochemical Properties of Macroporous Sn–Cu Alloy Electrode for Lithium-ion Batteries", Electrochimica Acta, v52, p 6741, 2007.
30.L. B. Chen, J. Y. Xie, H.C. Yu, T.H. Wang, "An Amorphous Si Thin Film Anode with High Capacity and Long Cycling Life for Lithium Ion Batteries", Journal of Applied Electrochemistry, v39, p 1157, 2009.
31.C. G. Bong, L. B. Ki, S. W. Chul, C. K. Koo, A. H. Jun, N. T. Hyun, K. K. Won, "Effects of Cu Current Collector as a Substrate on Electrochemical Properties of Li/Si Thin Film Cells", Journal of Materials Science, v41, p 313, 2006.
32.T. Takamura, "A Vacuum Deposited Si Film Having a Li Extraction Capacity over 2000 mAh/g with a Long Cycle Life", Journal of Power Sources, v129, p 96, 2004.
33.T. Takamura, M. Uehara, J. Suzuki, K. Sekine, K. Tamura, "High Capacity and Long Cycle Life Silicon Anode for Li-Ion Battery", Journal of Power Sources, v158, p 1401, 2006.
34.F. Y. Zhang, A. K. Prasad, S.G. Advani, "Investigation of a Copper Etching Technique to Fabricate Metallic Gas Diffusion Media", Journal of Micromechanics and Microengineering, v16, p 23, 2006.
35.K. Nogami, M. Kakimoto, T. Hayakawa, K. Yokomachi, "Modification Effects on the Aluminum Anodized Film of Hyperbranched Poly(siloxysilane)s end-Functionalized with Various Groups in Conductive Polymer Aluminum Solid Electrolytic Capacitor", Polymer Preprints, v55, p 1493, 2006
36.K. Nogami, M. Kakimoto, T. Hayakawa, Y. Ishida, M. Seino, K. Sakamoto, "Modification of Anodized Aluminum Film by Hyperbranched Poly(siloxysilane)s in Conductive Polymer Aluminum Solid Electrolytic Capacitor", Chemistry Letters, v35, p 134, 2006.
37.C. Portet, P. Taberna, P. Simon, "High Power Eensity Electrodes for Carbon Supercapacitor Applications", Electrochimica Acta, v50, p 4174,2005.
38.C. Portet, "Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications", Electrochimica Acta, v49, p 905, 2004.
39.C. Portet, P. L. Taberna, P. Simon, E. Flahaut, "Modification of Al Current Collector/Active Material Interface for Power Improvement of Electrochemical Capacitor Electrodes", Journal of the Electrochemical Society, v153, p 649, 2006.
40.K. Striebel, J. Shim, A. Sierra, A. Sierra, H. Yang, X. Song, R. Kostecki, K. McCarthy, "The Eevelopment of Low Cost LiFePO4-Based High Power Lithium-Ion Batteries", Journal of Power Sources, v146, p 33, 2005.
41.Y. R. Nian, H. Teng, "Influence of Surface Oxides on the Impedance Behavior of Carbon-Based Electrochemical Capacitors", Journal of Electroanalytical Chemistry, v540, p 119, 2003.
42.Y. R. Nian, H. Teng, "Nitric Ccid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance", Journal of the Electrochemical Society, v149, p 1008, 2002.
43.T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, "Electrochemical Modification of Active Carbon Fiber Electrode and its Application to Double-Layer Capacitor", Journal of Power Sources, v60, p 249, 1996.
44.W. G. Pell, B.E. Conway, "Analysis of Non-Uniform Charge/Discharge and Rate Effects in Porous Carbon Capacitors Containing Suboptimal Electrolyte Concentrations", Journal of Electroanalytical Chemistry, v491, p 9, 2000.
45.J. M. Tarascon and M. Armand, "Issues and Challenges Facing Rechargeable
Lithium Batteries", Nature, v414, p 359, 2001.
46.K. M. Abraham, D. M. Pasquariello, and F. J. Martin, "Mixed Ether Electrolytes for Secondary Lithium Batteries with Improved Low Temperature Performance", Journal of the Electrochemical Society, v133, p 661, 1986.
47.A. J. Jacobson, R. R. Chianelli, and M. S. Whittingham, "Amorphous Molybdenum-Disulfide Cathodes", Journal of the Electrochemical Society, v126, p 2277, 1979.
48.M. S. Whittingham and M. B. Dines, "Normal-Butyllithium-Effective, General
Cathode Screening Agent", Journal of the Electrochemical Society, v124, p 1387, 1977.
49.D. L. Maricle and J. P. Mohns, US patent 3567515, 1971.
50.R. Kotz, M. Carlen, "Principles and Applications of Electrochemical Capacitors", Electrochimica Acta, v45, p 2483, 2000.
51.A. Burke, "Ultracapacitors: Why, How, and Where Is the Technology", Journal of Power Sources, v91, p 37-50, 2000.
52.M. Mastragostino, C. Arbizzani, F. Soavi, "Conducting Polymers as Electrode Materials in Supercapacitors", Solid State Ionics, v148, p 493, 2002.
53.R.J. Brodd, K.R. Bullock, R.A. Leising, R.L. Middaugh, J.R. Miller, E.Takeuchi, "Batteries, 1977 to 2002", Journal of the Electrochemical Society, v151, p 1, 2004.
54.A. Rufer, "A Supercapacitor-Based Energy Storage Substation for Voltage Compensation in Weak Transportation Networks", IEEE Transactions on Power Delivery, v19, p 629, 2004.
55.P. Rodatz, G. Paganelli, A. Sciarretta, L. Guzzella, "Optimal Power Management of an Experimental Fuel Cell/Supercapacitor- Powered Hybrid Vehicle", Control Engineering Practice, v13, p 41, 2005.
56.D. Lazano-Castello, D. Carzorla-Amoros, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, "Influence of Pore Structure and Surface Chemistry on Electric Double Layer Capacitance in Non-Aqueous Electrolyte", Carbon, v41, p 1765, 2003.
57.J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, "Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors ", Journal of Power Sources, v101, p 109, 2001.
58.Q.L. Fang, "Microporous Ruthenium Oxide Films for Energy Storage Applications", Materials Research Society Symposium - Proceedings, v658, p 9171, 2001.
59.J. Jiang, A. Kucernak, "Novel electrocatalyst for the oxygen reduction reaction in acidic media using electrochemically activated iron 2,6-bis(imino)-pyridyl complexes", Electrochimica Acta, v47, p 1967, 2002.
60.M. Mastragostino, C. Arbizzani, F. Soavi, "Conducting Polymers as Electrode Materials in Supercapacitors ", Solid State Ionics, v 148, p 493, 2002.
61.W. C. Chen, T.C. Wen, H. Teng, "Polyaniline-Deposited Porous Carbon Electrode for Supercapacitor", Electrochimica Acta, v48, p 641, 2003.
62.R. Kötz and M. Carlen, "Principles and Applications of Electrochemical Capacitors", Electrochimica Acta, v45, p 2483, 2000.
63.E. Frackowiak and F. Béguin, "Carbon Materials for the Electrochemical Storage of Energy in Capacitors", Carbon, v39, p 937, 2001.
64.H. Yang, M. Yoshio, K. Isono, and R. Kuramoto, "Improvement of Commercial Activated Carbon and its Application in Electric Double Layer Capacitors", Electrochemical Solid-State Letter, v5, p 141, 2002.
65.D. Qu and H. Shi, "Studies of Activated Carbons Used in Double-Layer Capacitors", Journal of Power Sources, v74, p 99, 1998.
66.K. Kinishita, Carbon: Electrochemical and physicochemical properties, Wiley, New York, 1988.
67.K. Jurewicz, K. Babel, A. Źiółkowski, and H. Wachowska, "Ammoxidation of Active Carbons for Improvement of Supercapacitor Characteristics", Electrochimica Acta, v48, p 1491, 2003.
68.K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, and J. Machnikowski, "Electrochemical Capacitors Based on Highly Porous Carbons Prepared by KOH Activation", Electrochimica Acta, v49, p 515, 2004.
69.T. Momma, X. Liu, T. Osaka, Y. Ushio, and Y. Sawada, "Electrochemical Modification of Active Carbon Fiber Electrode and its Application to Double-Layer Capacitor", Journal of Power Sources, v60, p 249, 1996.
70.R. Z. Ma, J. Liang, B. Q. Wei, B. Zhang, C. L. Xu, and D. H. Wu, "Study of Electrochemical Capacitors Utilizing Carbon Nanotube Electrodes", Journal of Power Sources, v84, p 126, 1999.
71.K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim, and Y. H. Lee, "Supercapacitors Using Single-walled Carbon Nanotube Electrodes", Advance Material, v13, p 497, 2001.
72.B. J. Yoon, S. H. Jeong, K. H. Lee, H. S. Kim, C. G. Park, and J. H. Han, "Electrical Properties of Electrical Double Layer Capacitors with Integrated Carbon Nanotube Electrodes", Chemical Physics Letters, v388, p 170, 2004.
73.N. L. Wu, J. Y. Hwang, P. Y. Liu, C. Y. Han, S. L. Kuo, K. H. Liao, M. H. Lee, and S. Y. Wang, "Synthesis and Characterization of Sb-doped SnO2 Xerogel Electrochemical Capacitor", Journal of the Electrochemical Society, v148, p 550, 2001.
74.N. L. Wu, C. Y. Han, and S. L. Kuo, "Enhanced Performance of SnO2 Xerogel Electrochemical Capacitor Prepared by Novel Crystallization Process", Journal of Power Sources, v109, p 418, 2002.
75.H. C. Liang, F. Chen, R. G. Li, L. Wang, and Z. H. Deng, "Electrochemical Study of Activated Carbon-Semiconducting Oxide Composites as Electrode Materials of Double-Layer Capacitors", Electrochimica Acta, v49, p 3463, 2004.
76.S. Trasatti and G. Buzzanca, "Ruthenium Dioxide: A New Interesting Electrode Material. Solid State Structure and Electrochemical Behavior", Journal of Electroanalytical Chemistry, v29, p 1, 1971.
77.D. Galizzioli, F. Tantardini, and S. Trasatti, "Ruthenium Dioxide-New Electrode Material Behavior in Acid Solutions of Inert Electrolytes", Journal of Applied Electrochemistry, v4, p 57, 1974.
78.J. P. Zheng, P. J. Cygan, and T. R. Jow, "Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors", Journal of the Electrochemical Society, v142, p 2699, 1995.
79.J. P. Zheng and T. R. Jow, "A New Charge Storage Mechanism for Electrochemical Capacitors", Journal of the Electrochemical Society, v142, p 6, 1995.
80.J. P. Zheng and T. R. Jow, "High Energy and High Power Density Electrochemical Capacitors", Journal of Power Sources, v62, p 155, 1996.
81.T. R. Jow and J. P. Zheng, "Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium Oxide", Journal of the Electrochemical Society, v145, p 49, 1998.
82.J. P. Zheng, "Ruthenium Oxide-Carbon Composite Electrodes for Electrochemical Capacitors", Electrochemical and Solid-State Letters, v2, p 359, 1999.
83.C. C. Hu and Y. H. Huang, "Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors", Journal of the Electrochemical Society, v146, p 2465, 1999.
84.C. Lin, J. A. Ritter, and B. V. Popov, "Development of Carbon-Metal Oxide Supercapacitors from Sol-Gel Derived Carbon-Ruthenium Xerogels", Journal of Tthe Electrochemical Society, v146, p 3155, 1999.
85.J. M. Miller and B. Dunn, "Morphology and Electrochemistry of Ruthenium/Carbon Aerogel Nanostructures", Langmuir, v15, p 799, 1999.
86.I. H. Kim and K. B. Kim, "Ruthenium Oxide Thin Film Electrodes for Supercapacitors", Electrochemical and Solid-State Letters, v4, p 62, 2001.
87.L. D. Burke and D. P. Whelan, "A Voltammetric Investigation of the Charge Storage Reactions of Hydrous Iridium Oxide Layers", Journal of the Electrochemical Society, v162, p 121, 1984.
88.H. Y. Lee, V. Manivannan, and J. B. Goodenough, "Electrochemical Capacitors with KCl Electrolyte", Comptes Rendus de l''Académie des sciences, v2, p 565, 1999.
89.H. Y. Lee and J. B. Goodenough, "Supercapacitor Behavior with KCl Electrolyte", Journal of Solid State Chemistry, v144, p 220, 1999.
90.S. C. Pang, M .A. Anderson, and T. W. Chapman, "Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel Derived and Electrodeposited Manganese Dioxide", Journal of the Electrochemical Society, v147, p 444, 2000.
91.H. Y. Lee, S. W. Kim, and H. Y. Lee, "Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode", Electrochemical and Solid-State Letters, v4, p 19, 2001.
92.M. Toupin, T. Brousse, and D. Bélanger, "Influence of Microstructure on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide", Chemistry of Materials, v14, p 3946, 2002.
93.C. C. Hu and T. W. Tsou, "Ideal Capacitive Behavior of Hydrous Manganese Oxide Prepared by Anodic Deposition", Electrochemistry Communications, v4, p 105, 2002.
94.C. C. Hu and T. W. Tsou, "Capacitive and Textual Characteristics of Hydrous Manganese Oxide Prepared by Anodic Deposition", Electrochimica Acta, v47, p 3523, 2002.
95.M. S. Hong, S. H. Lee, and S. W. Kim, "Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor", Electrochemical and Solid-State Letters, v5, p 227, 2002.
96.J. Jiang and A. Kucernak, "Electrochemical Supercapacitor Material Based in Manganese Oxide: Preparation and Characterization", Electrochimica Acta, v47, p 2381, 2002.
97.Y. U. Jeong and A. Manthiram, "Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes", Journal of the Electrochemical Society, v149, p 1419, 2002.
98.H. Kim and B. N. Popov, "Synthesis and Characterization of MnO2-based Mixed Oxides as Supercapacitors", Journal of the Electrochemical Society, v150, p 56, 2003.
99.T. Kudo, Y. Ikeda, T. Watanabe, M. Hibino, M. Miyayama, H. Abe, and K. Kajita, "Amorphous V2O5/Carbon Composites as Electrochemical Supercapacitor Electrodes", Solid State Ionics, v152, p 833, 2002.
100.N. L. Wu, Y. P. Lan, C. Y. Han, S. Y. Wang, and L. R. Shiue, in Electrochemical Capacitor and Hybrid Power Sources, R. J. Brodd, D. H. Doughty, J. H. Kim, M. Morita, K. Naoi, G. Nagasubramanian and C. Nanjundiah, Editors, PV 2002-7, p. 95, The Electrochemical Society Proceedings Series, Pennington, 2002.
101.N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu and L. R. Shiue, "Electrochemical Capacitor of Magnetite in Aqueous Electrolytes", Journal of Power Sources, v113, p 173, 2003.
102.S. Y. Wang and N. L. Wu, "Operating Characteristics of Aqueous Magnetite Electrochemical Capacitors", Journal of Applied Electrochemistry, v33, p 345, 2003.
103.T. Brousse, and D. Bélanger, "A hybrid Fe3O4-MnO2 Capacitor in Mild Aqueous Electrolyte", Electrochemical and Solid-State Letters, v6, p 244, 2003.
104.K. W. Chung, K .B. Kim, S. H. Han, and H. Lee, "Novel Synthesis and Electrochemical Characterization of Nano-Sized Cellular Fe3O4 Thin Film", Electrochemical and Solid-State Letters, v8, p 259, 2005.
105.K. C. Liu and M. A. Anderson, "Porous Nickel Oxide/Nickel Films for lectrochemical Capacitors", Journal of the Electrochemical Society, v143, p 124, 1996.
106.V. Srinivasan and J. W. Weidner, "An Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors", Journal of the Electrochemical Society, v144, p 210, 1997.
107.V. Srinivasan and J. W. Weidner, "Studies on the Capacitance of Nickel Oxide Films: Effect of Heating Temperature and Electrolyte Concentration", Journal of the Electrochemical Society, v147, p 880, 2000.
108.X. F. Wang and X. H. Kong, "Research on New Type NiOx/KOH/C Supercapacitor", Journal of Inorganic Materials, v16, p 815, 2001.
109.E. E. Kalu, T. T. Nwoga, V. Srinivasan, and J. W. Weidner, "Cyclic Voltammetric Studies of the Effects of Time and Temperature on the Capacitance of Electrochemically Deposited Nickel Hydroxide", Journal of Power Sources, v92, p 163, 2001.
110.K. W. Nam and K. B. Kim, "A Study of the Preparation of NiOx Electrode via Electrochemical Route for Supercapacitor Applications and their Charge Storages Mechanism", Journal of the Electrochemical Society, v149, p 346, 2002.
111.K. W. Nam, W. S. Yoon, and K. B. Kim, "X-ray Absorption Spectroscopy Studies of Nickel Oxide Thin film Electrodes for Supercapacitors", Electrochimica Acta, v47, p 3201, 2002.
112.F. B. Zhang, Y. K. Zhou, and H. L. Li, "Nanocrystalline NiO as an Electrode Material for Electrochemical Capacitor", Materials Chemistry and Physics, v83, p 260, 2004.
113.S. H. Lee, C .E. Tracy, and J. R. Pitts, "Effect of Nonstoichiometry of Nickel Oxides on their Supercapacitor Behavior", Electrochemical and Solid-State Letters, v7, p 299, 2004.
114.C. Lin, J. A. Ritter, and B. V. Popov, "Characterization of Sol-Gel Derived Cobalt Oxide Xerogels as Electrochemical Capacitors", Journal of the Electrochemical Society, v145, p 4097, 1998.
115.V. Srinivasan and J. W. Weidner, "Capacitance Studies of Cobalt Oxide Films formed via Electrochemical Precipitation", Journal of Power Sources, v108, p 15, 2002.
116.H. K. Kim, T. Y. Seong, J. H. Lim, W. I. Cho, and Y. S. Yoon, "Electrochemical and Structural Properties of Rradio Frequency Sputtered Cobalt Oxide Electrodes for Thin-Film Supercapacitors", Journal of Power Sources, v102, p 167, 2001.
117.T. C. Liu, W. G. Pell, and B. E. Conway, "Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors", Journal of the Electrochemical Society, v145, p 1882.
118.W. C. Chen and T. C. Wen, "Electrochemical and Capacitive Properties of Polyaniline-Implanted Porous Carbon Electrode for Supercapacitors", Journal of Power Sources, v117, p 273, 2003.
119.T. Liu, T. V. Sreekumar, S. Kumar, R. H. Hauge, and R. E. Smalley, "SWNT/PAN Composite Film-Based Supercapacitors", Carbon, v41, p 2440, 2003.
120.J. H. Park, J. M. Ko, O. O. Park, and D. W. Kim, "Capacitance Properties of Graphite/Polypyrrole Composite Electrode Prepared by Chemical Polymerization of Pyrrole on Graphite Fiber", Journal of Power Sources, v105, p 20 , 2002.
121.K. Jurewicz, S. Delpeux, V. Bertagna, F. Béguin, and E. Frackowiak, "Supercapacitors from Nanotubes/Polypyrrole Composites", Chemical Physics Letter, v347, p 36, 2001.
122.Q. Xiao and X. Zhou, "The Study of Multiwalled Carbon Nanotube Deposited with Conducting Polymer for Supercapacitor", Electrochimica Acta, v48, p 575, 2003.
123.M. Mastragostino, C. Arbizzani, and F. Soavi, "Polymer-Based Supercapacitors", Journal of Power Sources, p 812, 2001.
124.R. Kötz and M. Carlen, "Principles and Applications of Electrochemical Capacitors", Electrochimica Acta, v45, p 2483, 2000.
125.A. Burke, "Ultracapacitors: Why, How, and Where is the Technology", Journal of Power Sources, v91, p 37, 2000.
126.B. E. Conway, "Transition from Supercapacitor to Battery Behavior in Electrochemical Energy Storage", Journal of the Electrochemical Society, v138, p 1539, 1991.
127.B. E. Conway, V. Birss, and J. Wojtowicz, "The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors", Journal of Power Sources, v66, p 1, 1997.
128.A. D. Pasquier, I. Plitz, S. Menocal, and G. Amatucci, "A Comparative Study of Li-Ion Battery, Supercapacitor and Nonaqueous Asymmetric Hybrid Devices for Automotive Applications", Journal of Power Sources, v115, p 171, 2003.
129.E. peled, "Electrochemical Behavior of Alkali and Alkaline Earth Metals in Non-Aqueous Battery Systems-the Solid Electrolyte Interphase Model", Journal of the Electrochemical Society, v126, p 2047, 1979
130.V. R. Koch, J. L. Goldman, C. J. Mtttos, and M. Mulvaney, "Specular Lithium Deposits from Lithium Hexafluoroarsenate/Diethyl ether electrolytes", Journal of the Electrochemical Society, v129, p 1, 1982.
131.D. Aurbach, Y. Gofer, and J. Langzam, "Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems", Journal of the Electrochemical Society, v136, p 3198, 1989.
132.D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, "A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions", Solid State Ionics, v148, p 405, 2002.
133.T. Nagaura and K. Tozawa, "Characterization of Low Temperature Prepared LixMnO2", Solar Energy Technologies Program, v9, p 209, 1990.
134.H. J. Orman and P. J. Wiseman, "Cobalt(Ill) Lithium Oxide", Acta Crystallographica , v40, p 12, 1984
135.E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner, and H. W. Lin, "Rechargeable Li/LixCoO2 Cell", Journal of Power Sources, v21, p 25, 1987.
136.J. Molenda, A. Stoklosa, and T. Bak, "Modification in the Electronic Structure of Cobalt Bronze LixCoO2 and the Resulting Electrochemical Properties", Solid State Ionics, v36, p 53, 1989.
137.吳宇平, 戴曉兵, 馬軍旗, 程预江, 锂離子電池-應用與實踐, 北京,化學工業出版社, 2004.
138.W. R. Liu, "Synthesis and Characterization of Si-Based Anode Materials for Lithium Ion Batteries", National Taiwan University, 2006.
139.E. Bauer, C. Bellitto, "A versatile Method of Preparation of Carbon-Rich LiFePO4: A Promising Cathode Material for Li-Ion Batteries", Journal of Power Sources, v146, p 544, 2005.
140.H. Chang, C. Chang, "Kinetic Study on Low-Temperature Synthesis of LiFePO4 via Solid-State Reaction", Journal of Power Sources, v158, p 550, 2006.
141.H. Chang, C. Chang, "Study on Dynamics of Structural Transformation During Charge/Discharge of LiFePO4 Cathode", Electrochemistry Communications, v10, p 335, 2008.
142.Z. Chenand J. R. Dahn, "Reducing Carbon in LiFePO4/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density", Journal of the Electrochemical Society, v149, p 1184, 2004
143.J. Y. Chung, J. T. Bloking, "Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes", Nature Materialsls, v1, p 123, 2002.
144.H. Gabrisch, J. D. Wilcox, "Carbo Surface Layers on a High-Rate LiFePO4", Electrochemical and Solid-State Lettersrs, v9, p 360, 2006.
145.A. Guerfi, M. Kaneko, "LiFePO4 Water-Soluble Binder Electrode for Li-Ion Batteries", Journal of Power Sources, v163, p 1047, 2007.
146.K. Hsu, S. Tsay, "Physical and Electrochemical Properties of LiFePO4/Carbon Composite Synthesized at Various Pyrolysis Periods", Journal of Power Sourceses, v146, p 529, 2005.
147.B. Kang and G. Ceder, "Battery Materials for Ultrafast Charging and Discharging", Nature, v458, p 190, 2009.
148.Y. Xia, M. Yoshio, "Improved Electrochemical Performance of LiFePO4 by Increasing its Specific Surface Area", Electrochimica Acta, v52, p 240, 2006.
149.J. L. Allen, T. R. Jow, "Low Temperature Performance of Nanophase Li4Ti5O12", Journal of Power Sources, v159, p 1340, 2006.
150.J. Deng, Z. Lu, "Preparation and Electrochemical Properties of Li4Ti5O12 Thin Film Electrodes by Pulsed Laser Deposition", Journal of Power Sources, v193, p 816, 2009.
151.C. Jiang, Y. Zhou, "Preparation and Rate Capability of Li4Ti5O12 Hollow-Sphere Anode Material", Journal of Power Sources, v166, p 514, 2007.
152.H. Kitaura, A. Hayashi, "Electrochemical Analysis of Li4Ti5O12 Electrode in All-Solid-State Lithium Secondary Batteries", Journal of the Electrochemical Society, v156, p 114, 2009.
153.C. Ouyang, Z. Zhong, "Ab Initio Studies of Structural and Electronic Properties of Li4Ti5O12 Spinel", Electrochemistry Communications, v9, p 1107, 2007.
154.J. Shu, "Electrochemical Behavior and Stability of Li4Ti5O12 in a Broad Noltage Window", Journal of Solid State Electrochemistry, v13, p 1535, 2008.
155.M. Venkateswarlu, C. Chen, "Electrochemical Properties of Nano-Sized LiTiO Powders Synthesized by a Sol–Gel Process and Characterized by X-Ray Absorption Spectroscopy", Journal of Power Sources, v146, p 204, 2005.
156.D. Wang, D. Choi, "Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2", Chemistry of Materials,v 20, p 3435, 2008.
157.J. Yang , H. Bai, "IR and XPS Investigation of Visible-Light Photocatalysis—Nitrogen–Carbon-Doped TiO2 Film", Applied Surface Science, v253, p 1988, 2006.
158.Yuan, T., R. Cai, "Combustion Synthesis of High-Performance Li4Ti5O12 for Secondary Li-Ion Battery", Ceramics International, v35, p 1757, 2009.
159.A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries", Journal of the Electrochemical Society, v144, p 1188, 1997.
160.J. M. Tarascon and M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries", Nature, v414, p 359, 2001.
161.B. A. Johnson, R. W. White, "Characterization of Commercially Available Lithium-Ion Batteries", Journal of Power Sources , v70, p 48, 1998.
162.A. S. Gozdz, A. C. Chu, Y. M. Chiang, and J. G.N. Riley, "Lithium secondary cell with high charge and discharge rate capability", US patent application 2005/0233219A1, 2005.
163.H. C. Wu, C. Y. Su, P. H. Hsieh, B. M. Lin, M. Y. Yang, and N. L. Wu, "High rate capability design of lithium ion secondary battery", US patent application 2005/0233219A1, 2007.
164.B. Kang and G.. Ceder, "Battery Materials for Ultrafast Charging and Discharging", Nature, v458, p 190, 2009.
165.N. Ravet, J. B. Goodenough, S. Besner, M. Simoneau, P. Hovington, and M. Armand, The Electrochemical Society Meeting Abstracts, Vol. 99-2, Honolulu, HI, Oct 17-22, 1999
166.H. Huang, S. C. Yin, and L. F. Nazar, "Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates", Electrochemical and Solid-State Letters, v4, p 170, 2001.
167.D. Morgan, A. Van der Ven, and G. Ceder, "Li Conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) Olivine Materials", Electrochemical and Solid-State Letters, v7, p 30, 2004.
168.G. Chen, X. Song and T. J. Richardson, "Overcharge Protection for High Voltage Lithium Cells Using two Electroactive Polymers", Electrochemical and Solid-State Letters, v9, p 295, 2006.
169.S, Yang, P. Y. Zavalij, M. S. Whittingham, "Anodes for Lithium Batteries: Tin Revisited", Electrochemistry Communications, v5, p 587, 2001.
170.J. Chen and M. S. Whittingham, "Hydrothermal Synthesis of Lithium Iron Phosphate", Electrochemistry Communications, v8, p 855, 2006.
172.J. R. Dahn, A. K. Sleigh, H. Shi, J. N. Reimers, Q. Zhong, and B. M. Way, "Dependence of the Electrochemical Intercalation of Lithium in Carbons on the Crystal Structure of the Carbon", Electrochimica Acta, v38, p 1179, 1993.
173.Y. Nishi, Lithium Ion Batteries: Tokyo/Weinheim, Kodansha/Wiley-VCH, 1998.
174.H. Azuma, H. Imoto, S. Yamada, and K. Sekai, "Advanced Carbon Anode Materials for Lithium Ion Cells", Journal of Power Sources, v82, p 1, 1999.
175.J. R. Dahn, T. Zheng, Y. H. Liu, and J. S. Xue, "Mechanisms for Lithium Insertion in Carbonaceous Materials", Science, v270, p 590, 1995.
176.T. Zheng, W. R. McKinnon, and J. R. Dahn, "Hysteresis during Lithium Insertion in Hydrogen-Containing Carbons", Journal of the Electrochemical Society, v143, p 2137, 1996.
177.J. L. Tirado, "Inorganic Materials for the Negative Electrode of Lithium-Ion Batteries: State-of-the-Art and Future Prospects", Materials Science & Engineering R-Reports, v40, p 103, 2003.
178.http://www.benbest.com/cryonics/lessons.html.
179.E. Buiel, A. E. George, and J. R. Dahn, "On the Reduction of Lithium Insertion Capacity in Hard-Carbon Anode Materials with Increasing Heat-Treatment Temperature", Journal of the Electrochemical Society, v145, p 2252, 1998.
180.E. Buiel and J. R. Dahn, "Li-insertion in Hard Carbon Anode Materials for Li-Ion Batteries", Electrochimica Acta, v45, p 121, 1999.
181.A. J. Jacobson, R. R. Chianelli, and M. S. Whittingham, "Amorphous Molybdenum-Disulfide Cathodes", Journal of the Electrochemical Society, v126, p 2277, 1979.
182.T. D. Hatchard and J. R. Dahn, "In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon", Journal of the Electrochemical Society, v151, p 838, 2004.
183.M. N. Obrovac and L. Christensen, "Structural Changes in Silicon Anodes During Lithium Insertion/Extraction", Electrochemical and Solid State Letters, v7, p 93, 2004.
184.H. H. Chang, "Study on High Rate Charge/Discharge of LiFePO4 Cathode Material for Lithium Ion Batteries", Ph.D: National Taiwan University, 2009.
185.J. Yang, B. F. Wang, K. Wang, Y. Liu, J. Y. Xie, and Z. S. Wen, "Si/C Composites for High Capacity Lithium Storage Materials", Electrochemical and Solid State Letters, v6, p 154, 2003.
186.G. W. Zhou, H. Li, H. P. Sun, D. P. Yu, Y. Q. Wang, X. J. Huang, L. Q. Chen, and Z. Zhang, "Controlled Li Doping of Si Nanowires by Electrochemical Insertion Method", Applied Physics Letters, v75, p 2447, 1999.
187.H. Li, X. J. Huang, L. Q. Chen, G. W. Zhou, Z. Zhang, D. P. Yu, Y. J. Mo, and N. Pei, "The Crystal Structural Evolution of Nano-Si Anode caused by Lithium Insertion and Extraction at Room Temperature", Solid State Ionics, v135, p 181, 2000.
188.H. Y. Lee and S. M. Lee, "Graphite-FeSi Alloy Composites as Anode Materials for Rechargeable Lithium Batteries", Journal of Power Sources, v112, p 649, 2002.
189.J. H. Kim, H. Kim, and H. J. Sohn, "Addition of Cu for Carbon Coated Si-Based Composites as Anode Materials for Lithium-Ion Batteries", Electrochemistry Communications, v7, p 557, 2005.
190.B. C. Kim, H. Uono, T. Satou, T. Fuse, T. Ishihara, M. Ue, and M. Senna, "Cyclic Properties of Si-Cu/Carbon Nanocomposite anodes for Li-ion Secondary Batteries", Journal of the Electrochemical Society, v152, p 523, 2005.
191.W. R. Liu, N. L. Wu, D. T. Shieh, H. C. Wu, M. H. Yang, C. Korepp, J. O. Besenhard, and M. Winter, "Synthesis and Characterization of Nanoporous NiSi-Si Composite Anode for Lithium-ion Batteries", Journal of the Electrochemical Society, v154, p 97, 2007.
192.M. Winter and J. O. Besenhard, "Electrochemical Lithiation of Tin and Tin-Based Intermetallics and Composites", Electrochimica Acta, v45, p 31, 1999.
193.D. W. Murphy, F. J. Disalvo, J. N. Carides, and J. V. Waszczak, "Topochemical Reactions of Rutile Related Structures with Lithium", Materials Research Bulletin, v13, p 1395, 1978.
194.S. Morzilli and B. Scrosati, "Iron-Oxide Electrodes in Lithium Organic Electrolyte Rechargeable Batteries", Electrochimica Acta, v30, p 1271, 1985.
195.K. M. Abraham, D. M. Pasquariello, and E. B. Willstaedt, "Preparation and Characterization of Some Lithium Insertion Anodes for Secondary Lithium Batteries", Journal of the Electrochemical Society, v137, p 743, 1990.
196.H. Li, X. J. Huang, and L. Q. Chen, "Anodes Based on Oxide Materials for Lithium Rechargeable Batteries", Solid State Ionics, v123, p 189, 1999.
197.M. M. Thackeray and J. B. Goodenough, "Solid State Cell Wherein an Anode, Solid Electrolyte and Cathode Each Comprise a Cubic-Close-Packed Framework Structure", US patent 4,507,371, 1985.
198.E. Ferg, R. J. Gummow, A. Dekock, and M. M. Thackeray, "Spinel Anodes for Lithium-Ion Batteries", Journal of the Electrochemical Society, v141, p 147, 1994.
199.T. Ohzuku, A. Ueda, and N. Yamamoto, "Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells", Journal of the Electrochemical Society, v142, p 1431, 1995.
200.M. M. Thackeray, A. Dekock, M. H. Rossouw, D. Liles, R. Bittihn, and D. Hoge, "Spinel Electrodes from the Li-Mn-O System for Rechargeable Lithium Battery Applications", Journal of the Electrochemical Society, v139, p 363, 1992.
201.Y. H. Rho, K. Kanamura, and T. Umegaki, "LiCoO2 and LiMn2O4 Thin-Film Electrodes for Rechargeable Lithium Batteries - Preparation Using PVP Sol-Gel to Produce Excellent Electrochemical Properties", Journal of the Electrochemical Society, v150, p 107, 2003.
202.G. G. Amatucci, F. Badway, A. Du Pasquier, and T. Zheng, "An Asymmetric Hybrid Nonaqueous Energy Storage Cell", Journal of the Electrochemical Society, v148, p 930, 2001.
203.A. Singhal, G. Skandan, G. Amatucci, F. Badway, N. Ye, A. Manthiram, H. Ye, and J. J. Xu, "Nanostructured Electrodes for Next Generation Rechargeable Electrochemical Devices", Journal of Power Sources, v129, p 38, 2004
204.C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher, and M. M. Thackeray, "Studies of Mg-Substituted Li4-xMgxTi5O12 Spinel Electrodes (0 <= x <= 1) for Lithium Batteries", Journal of the Electrochemical Society, v148, p 102, 2001.
206.H. L. Zhao, Y. Li, Z. M. Zhu, J. Lin, Z. H. Tian, and R. L. Wang, "Structural and Electrochemical Characteristics of Li4-xAlxTi5O12 as Anode Material for Lithium-Ion Batteries", Electrochimica Acta, v53, p 7079, 2008.
207.H. Ge, N. Li, D. Y. Li, C. S. Dai, and D. L. Wang, "Electrochemical Characteristics of Spinel Li4Ti5O12 Discharged to 0.01 V", Electrochemistry Communications, v10, p 719, 2008.
208.S. Bach, J. P. Pereira-Ramos, and N. Baffier, "Electrochemical Behavior of a Lithium Titanium Spinel Compound Synthesized via a Sol-Gel Process", Journal of Materials Chemistry, v8, p 251, 1998.
209.Y. F. Tang, L. Yang, Z. Qiu, and J. S. Huang, "Preparation and Electrochemical Lithium Storage of Flower-Like Spinel Li4Ti5O12 Consisting of Nanosheets", Electrochemistry Communications, v10, p 1513, 2008.
210.T. Doi, Y. Iriyama, T. Abe, and Z. Ogumi, "Electrochemical Insertion and Extraction of Lithium Ion at Uniform Nanosized Li4/3Ti5/3O4 Particles Prepared by a Spray Pyrolysis Method", Chemistry of Materials, v17, p 1580, 2005.
211.http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
212. M. Tang, H. Y. Huang, N. Meethong, Y.-H. Kao, W.C. Carter, Y.-M. Chiang, "Model for the Particle Size, Overpotential, and Strain Dependence of Phase Transition Pathways in Storage Electrodes: Application to Nanoscale Olivines", Chemistry of Materials, v21, p 1557, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔