跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 10:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃皓堅
研究生(外文):Hao-Chien Huang
論文名稱:N型太陽能多晶矽的晶向控制及去疵之研究
論文名稱(外文):Grain Control and Gettering of N-type Multi-Crystalline Silicon for Photovoltaic Applications
指導教授:藍崇文藍崇文引用關係
口試委員:周明奇張正陽高振宏
口試日期:2010-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:71
中文關鍵詞:N型多晶矽晶向控制外部去疵
外文關鍵詞:n-type multi-crystalline silicongrain controlexternal gettering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:416
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
N型結晶矽相較於P型結晶矽有較高的少數載子壽命,且對於常見的金屬雜質的容忍度較高,在此論文當中吾人將生長N型多晶矽並將其電阻控制在0.5到1.5 Ω-cm之間,並同時使用spot cooling控制晶向和側向保溫改善界面,使有控制之N型多晶矽的晶粒隨著晶碇生長的高度增加而放大。從EBSD的分析觀察控制晶體之晶向分佈,吾人發現在有控制之晶體的頂部晶片,觀察到有大量的{112}方向的晶粒生成,而少數載子壽命也是隨著晶粒放大而有增加的趨勢。並使用Seco液蝕刻出晶片的缺陷,再由金相顯微鏡觀察其EPD的分佈以及對照其PL的影像,發現其中有晶向控制之晶體的缺陷密度隨著生長高度增加而有遞減的趨勢,且在控制晶體的頂部晶片最低可達103 cm-2,最後對有控制的晶片加入外部去疵的程序,使其少數載子壽命能夠再提升。

N-type silicon solar cell has attracted notice recently because of its high endurance to common impurity and higher minority carrier lifetime than p-type silicon. We have grown n-type mc-silicon crystal and control the resistivity distribution from 0.5 to 1.5 (Ω-cm). The active cooling spot was implemented at crucible bottom to control the grains and side insulation to enhance the grain size in n-type mc-silicon during directional solidification. The EBSD mapping of controlled ingot was measured to investigate the effect on active cooling spot, we also find out the grain orientation in the top of ingot was {112} dominant, and the minority carrier lifetime increased with the height of ingot. The wafers were also etched with a Seco solution to detect crystallographic defects by metallographic microscope and Photoluminescence images. The etch-pits density at the top wafer of controlled ingot had the lowest value about 103 cm-2. Finally, we used the phosphorus gettering to remove impurity from the wafers of controlled ingot, and its enhanced the lifetime of the controlled wafer.

致謝 I
摘要 II
英文摘要 III
目 錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1簡介 1
1.2文獻回顧 4
1.2.1 N型結晶矽在太陽能應用方面的優勢 4
1.2.2 N型多晶矽在太陽能方面應用的問題 10
1.2.3缺陷在太陽能多晶矽的影響 14
1.2.4太陽能多晶矽中晶界的特性 15
1.2.5太陽能多晶矽的晶界控制方法 17
1.2.6外部去疵對於太陽能多晶矽的應用 21
1-3研究動機 24
第二章 實驗方法及實驗器材 25
2.1實驗流程 25
2.1.1矽料清洗 25
2.1.2坩堝清洗及氮化矽層成形 25
2.1.3長晶過程 26
2.1.4晶體後處理 27
2.1.5晶體之去疵程序 28
2.2實驗裝置 29
2.2.1多晶矽生長的實驗組和對照組的裝置 29
2.2.2實驗裝置的使用 30
2.3實驗藥品 31
2.3.1矽晶生長使用藥品 31
2.3.2矽晶化學處理藥品 32
2.3.3磷擴散法與內部聚集法去疵使用藥品 33
2.4實驗器材與設備 35
2.4.1多晶鑄造高溫爐 (Casting furnace) 35
2.4.2晶體生長前後處理設備 38
2.4.3晶片化學處理設備 41
2.4.4量測設備 43
第三章 研究結果與討論 50
3.1 N型多晶矽之基本量測以及晶向控制討論 50
3.1.1不同氮化矽粉對於N型多晶矽生長之影響 50
3.1.2 N型多晶矽之晶粒生長分佈以及晶向控制討論 52
3.1.3 N型多晶矽之缺陷密度觀察和少數載子壽命分佈比較 58
3.2N型以及P型多晶矽之少數載子壽命比較及外部去疵結果 62
3.2.1 N型多晶矽的PL和μ-PCD Lifetime比較 64
3.2.2 P型和N型多晶矽之外部去疵後的PL和μ-PCD Lifetime比較 65
第四章 結論 67
參考文獻 68




[1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37), Prog Photovoltaics, 19 (2011) 84-92.
[2] ITRI, in: IEK (Ed.), 2011/01.
[3] in: Photon International, 2010.
[4] 林福銘、徐偉智, 台灣矽晶太陽能產業的科技發展與挑戰, in, 2010/04/19.
[5] 費致傑, 熱退火對太陽能多晶矽影響之研究, (2010) 50.
[6] K. Bothe, R. Sinton, J. Schmidt, Fundamental boron-oxygen-related carrier lifetime limit in mono- and multicrystalline silicon, Prog Photovoltaics, 13 (2005) 287-296.
[7] K.D. Smith, R.J. Nielsen, H.K. Gummel, D.B. Cuttriss, W. Rosenzweig, J.D. Bode, Solar Cells and Their Mounting, Bell Syst Tech J, 42 (1963) 1765-+.
[8] T. Schulz-Kuchly, Light-Induced-Degradation effects in boron–phosphorus compensated
n-type Czochralski silicon, Applied Physics Letters, 96 (2010) 093505.
[9] J.E. Cotter, P-Type Versus n-Type Silicon Wafers: Prospects for
High-Efficiency Commercial Silicon Solar Cells, IEEE TRANSACTIONS ON ELECTRON DEVICES, 53 (2006) 1893.
[10] D. Macdonald, L.J. Geerligs, Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon, Applied Physics Letters, 85 (2004) 4061-4063.
[11] A. Cuevas, R.A. Sinton, N.E. Midkiff, R.M. Swanson, 26-Percent Efficient Point-Junction Concentrator Solar-Cells with a Front Metal Grid, Ieee Electr Device L, 11 (1990) 6-8.
[12] M.J.C. Keith R. McIntosh, David D. Smith, William P. Mulligan and Richard M. Swanson, The Choice of Silicon Wafer for the Production of Low-Cost Rear-Contact Solar Cells, in: 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003.
[13] A. Cuevas, M.J. Kerr, C. Samundsett, F. Ferrazza, G. Coletti, Millisecond minority carrier lifetimes in n-type multicrystalline silicon, Applied Physics Letters, 81 (2002) 4952-4954.
[14] R.K. G. Coletti, V. D. Mihailetchi, Effect of iron in silicon feedstock on p- and n-type multicrystalline silicon solar cells, Journal of Applied Physics, 104 (2008).
[15] J. Schmidt, N-type Silicon-The Better Material Choice for Industrial High-Efficiency Solar Cells?, in: 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007.
[16] T. Buonassisi, Chemical Natures and Distributions of Metal Impurities in Multicrystalline Silicon Materials, Progress in Photovoltaics: Research and Applications, 14 (2006) 513-531.
[17] M. Dhamrin, T. Saitoh, K. Kamisako, K. Yamada, N. Araki, I. Yamaga, H. Sugimoto, M. Tajima, Technology development of high-quality n-type multicrystalline silicon for next-generation ultra-thin crystalline silicon solar cells, Sol Energ Mat Sol C, 93 (2009) 1139-1142.
[18] K. Arafune, M. Nohara, Y. Ohshita, M. Yamaguchi, Growth and characterization of n-type polycrystalline silicon ingots, Sol Energ Mat Sol C, 93 (2009) 1047-1050.
[19] T. Taishi, T. Hoshikawa, M. Yamatani, K. Shirasawa, X. Huang, S. Uda, K. Hoshikawa, Influence of crystalline defects in Czochralski-grown Si multucrystal on minority carrier lifetime, Journal of Crystal Growth, 306 (2007) 452-457.
[20] K. Hartman, M. Bertoni, J. Serdy, T. Buonassisi, Dislocation density reduction in multicrystalline silicon solar cell material by high temperature annealing, Applied Physics Letters, 93 (2008) 1017.
[21] A. Cuevas, M. Stocks, S. Armand, M. Stuckings, A. Blakers, F. Ferrazza, High minority carrier lifetime in phosphorus-gettered multicrystalline silicon, Applied Physics Letters, 70 (1997) 1017-1019.
[22] S.M. Myers, M. Seibt, W. Schroter, Mechanisms of transition-metal gettering in silicon, Journal of Applied Physics, 88 (2000) 3795-3819.
[23] A. Bentzen, A. Holt, R. Kopecek, G. Stokkan, J.S. Christensen, B.G. Svensson, Gettering of transition metal impurities during phosphorus emitter diffusion in multicrystalline silicon solar cell processing, Journal of Applied Physics, 99 (2006) -.
[24] B. Gao, X.J.Chen, S.Nakano, K.Kakimoto, Crystal growth of high-purity multicrystalline silicon using a unidirectional
solidification furnace for solar cells, Journal of Crystal Growth, 312 (2010) 1572-1576.
[25] Hitoshi Matsuo, R. Bairava Ganesha, Satoshi Nakano, Lijun Liu, Koji Arafune,, M.Y. Yoshio Ohshita, Koichi Kakimoto, Analysis of oxygen incorporation in unidirectionally solidified multicrystalline silicon for solar cells, Journal of Crystal Growth, 310 (2008) 2204-2208.
[26] S.N. Lijun Liua, Koichi Kakimoto, Carbon concentration and particle precipitation during directional
solidification of multicrystalline silicon for solar cells, Journal of Crystal Growth, 310 (2007) 2192.
[27] M.H. Dieter Linke, Large grain, multi-crystalline semiconductor ingot formation method and system, in, 2008.
[28] N. Usami, R. Yokoyama, I. Takahashi, K. Kutsukake, K. Fujiwara, K. Nakajima, Relationship between grain boundary structures in Si multicrystals and generation of dislocations during crystal growth, Journal of Applied Physics, 107 (2010) -.
[29] M.L. Kronberg, F.H. Wilson, Secondary recrystallization in copper, Metals Transformation, 185 (1949) 501-514.
[30] A. Bary, G. Nouet, Electrical activity of the first- and second-order twins and grain boundaries in silicon, Journal of Applied Physics, 63 (1988) 435-439.
[31] H. Wang, N. Usami, K. Fujiwara, K. Kutsukake, K. Nakajima, Microstructures of Si multicrystals and their impact on minority carrier diffusion length, Acta Materialia, 57 (2009) 3268-3276.
[32] J. Chen, B. Chen, T. Sekiguchi, M. Fukuzawa, M. Yamada, Correlation between residual strain and electrically active grain boundaries in multicrystalline silicon, Applied Physics Letter, 93 (2008) 112105.
[33] K. Fujiwara, Y. Obinata, T. Ujhara, N. Usami, G. Sazaki, K. Nakajima, In-situ observations of melt growth behavior of polycrystalline silicon, Journal of Crystal Growth, 262 (2004) 124-129.
[34] K. Fujiwara, W. Pan, N. Usami, K. Sawada, M. Tokairin, Y. Nose, A. Nomura, T. Shishido, K. Nakajima, Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting, Acta Materialia, 54 (2006) 3191-3197.
[35] V.D. Mihailetchi, Y. Komatsu, G. Coletti, R. Kvande, L. Arnberg, C. Knopf, K. Wambach, L.J. Geerligs, High efficiency industrial screen printed n-type solar cells with front boron emitter, in: Photovoltaic Specialists Conference, 2008. PVSC ''08. 33rd IEEE, 2008, pp. 1-5.
[36] K. Nakajima, K. Fujiwara, W. Pan, M. Tokairin, Y. Nose, N. Usami, Development of textured high-quality Si multicrystal ingots with same grain orientation and large grain sizes by the new dendritic casting, in: Photovoltaic energy conversion, conference record of the 2006 IEEE 4th world conference, 2006, pp. 964-967.
[37] T.Y. Wang, S.L. Hsu, C.C. Fei, K.M. Yei, W.C. Hsu, C.W. Lan, Grain contro lusing spot cooling in multi-crystalline silicon crystal growth, Journal of Crystal Growth, 311 (2009) 263-267.
[38] K.M. Yeh, C.K. Hseih, W.C. Hsu, C.W. Lan, High-quality multi-crystalline silicon growth for solar cells by grain-controlled directional solidification, Progress in Photovaltaics: Research and Applications, 18 (2010) 265-271.
[39] A. Bentzen, A. Holt, Overview of phosphorus diffusion and gettering in multicrystalline silicon, Mater Sci Eng B-Adv, 159-60 (2009) 228-234.
[40] S. Martinuzzi, F. Warchol, Dubois, N. Enjalbert, Influence of chromium on minority carrier properties in intentionally contaminated n-type mc-Si wafers, Mater Sci Eng B-Adv, 159-60 (2009) 253-255.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top