跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張容華
研究生(外文):Jung-Hua Chang
論文名稱:細菌轉醣化之研究:設計及合成轉醣酶抑制劑
論文名稱(外文):Design and Synthesis of BacterialTransglycosylase Inhibitors
指導教授:方俊民方俊民引用關係
指導教授(外文):Jim-Min Fang
口試委員:洪上程陳平鄭偉杰
口試日期:2011-06-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:216
中文關鍵詞:細菌轉醣化抑制劑
外文關鍵詞:TransglycosylaseInhibitors
相關次數:
  • 被引用被引用:2
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自從青黴素被發現以後,數十年來抗生素一直被用來對抗細菌感染所造成的疾病。然而廣泛使用抗生素的情況下,許多具抗藥性的菌種相繼產生,引起人與動物嚴重的用藥問題,因此發展新穎的抗生素成為刻不容緩的議題。細菌細胞壁主要是由肽聚醣所構成,其可提供胞壁的堅韌與剛性來保持菌體形狀來抵抗外界滲透壓差,對細菌之生存是相當重要的。肽聚醣生合成路徑中的獨特轉醣酶(TGase)由於位在細胞膜外側,藥物不需進入細胞膜內側與其作用,較不受其他因素干擾,且胜肽鏈的多醣體骨架在眾多細菌突變種中依然相同,不易產生突變,因而日漸成為抗菌劑研究的關注方向。
設計轉醣酶抑制劑的概念,主要是模擬以lipid II為單體經轉醣酶催化時,聚合成一多醣鏈狀的過渡態;當其行聚合反應時,經由電子轉移之化學過程中,會形成oxonium過渡態,因此我們設想可仿照此過渡態,設計新穎的轉醣酶抑制劑。我們利用特殊的醣–DANA, GlcNAc或是帶有能產生氫鍵官能基團的苯環結構來模擬lipid II多醣部分的骨架結構;另外,用脂質鏈(C8)malonate或是天然轉醣酶抑制劑—moenomycin結構中之脂質鏈phosphoglycerate來仿照過渡態中脂質鏈雙磷酸的部分。此外,我們也從脂質鏈phosphoglycerate的磷酸基團上延伸不同長度的胺鹽,預期用來找出多醣部分和脂質鏈雙磷酸間之最佳距離。

成功合成出一系列具有潛力成為轉醣酶抑制劑之化合物後,我們將其進行轉醣酶活性以及最低抑菌濃度之檢測。篩選結果顯示,在所有我們設計之轉醣酶抑制劑中,化合物59之轉醣酶活性抑制效果和抑菌效果都是最好的,其可以在100 μM下完全抑制住轉醣酶之活性,此外其最低抑菌濃度為100 μM;而化合物60的轉醣酶活性和抑菌效果也相當不錯,其在100 μM下有80%抑制轉醣酶之活性。
OOHOOPOOOHH2N59Bestinhibition(100%inhibitionat100uM)OOEtOOPOOOH6080%inhibitionat100uMH2N
另外,我們發現到從脂質鏈phosphoglycerate的磷酸基團上延伸不同長度的胺基鹽這一系列之化合物,在100 μM下幾乎都有些許抑制轉醣酶之活性;可惜當我們引入用來模擬lipid II多醣部分的骨架結構之DANA, GlcNAc或是帶有能產生氫鍵官能基團的苯環結構後,發現到轉醣酶抑制效果皆消失,推測是由於原先用來模擬轉醣化部分正價性質之胺基鹽結構被無正電性質之triazole或醯胺鍵取代所導致。因此從轉醣酶活性檢測結果中,我們發現脂質鏈phosphoglycerate可成功取代lipid II中脂質鏈雙磷酸的部分,但脂質鏈malonate則無法達到此效果。依據活性的化合物結構特徵來看,轉醣酶抑制劑之設計結構除了應含有脂質鏈與磷酸團基之特性,且由磷酸根延伸胺基鹽之正價性質是相當重要的;未來將這些具活性的結構衍生修飾,期望能發展出更具轉醣酶抑制效果的抑制劑。

The discovery of penicillin antibiotics has a great impact on the treatment of infections caused by bacteria. However, the emergence of drug resistance has become a serious threat to human health. There is an urgent need to develop new agents that are active against resistant bacteria. The major constituent of bacterial cell wall is the peptidoglycan, which allows bacteria to live in a variable internal osmotic environment. Transglycosylase (TGase) is located on the extracellular surface of the bacterial cell membrane, where it catalyzes the polymerization of lipid II to establish the bacterial cell wall. Thus, TGase can be a potential target for development of new antibiotics.
We designed and synthesized some potential transglycosylase inhibitors using 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA), N-acetylglucosamine (GlcNAc) or benzene ring bearing several hydrogen-bonding groups to mimic the saccharide part of lipid II, the natural substrate of TGase. On the other hand, long chain malonate or phosphoglycerate, a characteristic motif of moenomycin, were used to mimic the long chain pyrophosphate part. We also elongated different lengths of terminal amine from phosphoglycerate in order to determine the effect of the distance from phosphoglycerate to the saccharide part of lipid II. These kinds of inhibitors are expected to block the process of transglycosylation by mimicking the transition state in lipid II polymerization.

Some potential transglycosylase (TGase) inhibitors were synthesized and subjected to HPLC-based TGase fluorescence assay and MIC assay. The results have revealed that compound 59 is the best inhibitor having complete inhibition of TGase at 100 μM, among the designed compounds based on the transition-state of lipid II polymerization. Compound 60 has 80% inhibition at 100 μM.
OOHOOPOOOHH2N59Bestinhibition(100%inhibitionat100uM)OOEtOOPOOOH6080%inhibitionat100uMH2N
Most derivatives of phosphoglycerate bearing a terminal amino group showed some inhibition against TGase at 100 μM according to the HPLC-based fluorescence assay; however, the inhibitory activity diminished after connection with DANA, GlcNAc or benzene ring bearing several hydrogen-bonding groups. Though the part of long chain pyrophosphate could be replaced by the phosphoglycerate, a characteristic motif of moenomycin in TGase binding, it cannot be replaced by malonates. Phosphoglycerate coupled with the terminal amine might play an important role in TGase inhibition. Modification of these active compounds may eventually lead to more efficient inhibitors of TGase.

謝誌………………………………………………………………… I
中文摘要……………………………………………………………III.
英文摘要……………………………………………………………V
目錄…………………………………………………………………VII
圖目錄………………………………………………………………X
表目錄………………………………………………………………XI.
流程目錄……………………………………………………………XII
簡稱用語對照表……………………………………………………XIII
第一章 緒論…………………………………………………………1
1.1細菌細胞壁之生合成機制與重要性…………………………….1
1.2抗生素的介紹與抗藥性…………………………………………4
1.3青黴素結合蛋白與轉醣酶構造…………………………………6
1.4轉醣化機制………………………………………………………8
1.5轉醣酶抑制劑的發展……………………………………………11
1.6轉醣酶活性分析法………………………………………………19
1.6.1 放射標誌分析法……………………………………………19
1.6.2 高效能液相層析分析法……………………………………19.
1.6.3 表面電槳共振分析法………………………………………22
1.6.4 螢光異向性分析法…………………………………………23
1.7過渡態模擬抑制劑……………………………………………24
第二章 結果與討論………………………………………………26
2.1轉醣酶抑制劑的設計概念……………………………………26
2.2各轉醣酶抑制劑之設計來源及合成方法……………………28
2.2.1 DANA四號位置修飾脂質鏈pyrophosphate………………28.
2.2.2 DANA四號位置修飾脂質鏈malonate衍生物………………39
2.2.3脂質鏈phosphoglycerate衍生物…………………………45
2.2.4 DANA四號位置修飾脂質鏈phosphoglycerate衍生物……54
2.2.5其他脂質鏈phosphoglycerate衍生物………………………62
2.2.5.1 以GlcNAc模擬多醣部分骨架結構…………………………62
2.2.5.2 以苯環結構模擬多醣部分骨架結構………………………64
2.3各合成之潛在轉醣酶抑制劑活性分析…………………………66
2.3.1轉醣酶活性檢測………………………………………………68
2.3.2最低抑菌濃度之檢測…………………………………………72
2.4結論………………………………………………………………74
第三章 實驗部份……………………………………………………77
3.1 General part…………………………………………………78
3.2 General procedures of HPLC-based TGase fluorescence assay……79
3.3 General procedures of MIC assay……………………79
3.4 Synthetic procedures and characterization of compounds…………………………………………………………80
參考文獻……………………………………………………………139.
附錄:1H, 13C, 31P NMR光譜……………………………………146


1.
(a) Bouhss, A.; Trunkfield, A. E.; Bugg, T. D. H.; Mengin-Lecreulx, D. FEMS Microbiol. Rev. 2008, 32, 208–233. The biosynthesis of peptidoglycan lipid-linked intermediates. (b) van Heijenoort, J. Microbiol. Mol. Biol. Rev. 2007, 71, 620–635. Lipid intermediates in the biosynthesis of bacterial peptidoglycan. (c) van Heijenoort, J. Nat. Prod. Rep. 2001, 18, 503–519. Recent advances in the formation of the bacterial peptidoglycan monomer unit.
2.
Welzel, P. Chem. Rev. 2005, 105, 4610–4660. Syntheses around the transglycosylation step in peptidoglycan biosynthesis.
3.
Schwartz‚ B.; Markwalder, J. A.; Seitz‚ S. P.; Wang‚ Y.; Stein, R. L. Biochemistry 2002, 41, 12551–12561. A kinetic characterizeation of the glycosyltransferase activity of Escherichia coli PBP1b and development of a continuous fluorescence assay.
4.
(a) Patrick, G. L., An Introduction to Medicinal Chemistry. 3rd ed.; Oxford: 2005. (b) Bauman, R. W.,李政登,2008,微生物學(精華版).
5.
姚富洲,新編生物科技,2007。
6.
王仁聰,合成肽聚醣轉醣酶之LipidⅡ受質與發展過度態模擬抑制劑:國立台灣大學化學所博士論文,2010。
7.
(a) Kahne, D.; Leimkuhler, C.; Lu, W.; Walsh, C.T. Chem. Rev. 2005, 105, 425–448. Glycopeptide and lipoglycopeptide antibiotics. (b) Williams, D. H.; Williamson, M. P.; Butcher, D. W.; Hammond, S. J. J. Am. Chem. Soc. 1983, 105, 1332–1339. Detailed binding sites of the antibiotics vancomycin and ristocetin A: determination of intermolecular distances in antibiotic/substract complexes by use of the time-dependent NOE.
8.
Yuan, Y.; Barrett, D.; Zhang, Y.; Kahne, D.; Sliz, P.; Walker, S. Proc. Natl. Acad.
140
Sci. USA 2007, 104, 5348–5353. Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis.
9.
Haenni, M.; Majcherczyk, P. A.; Barblan, J.-L.; Moreillon, P. Antimicrob. Agents Chemother. 2006, 50, 4062–4069. Mutational analysis of class A and class B penicillin-binding proteins in Streptococcus gordonii.
10.
Lovering, A. L.; de Castro, L. H.; Lim, D.; Strynadka, N. C. J. Science 2007, 315, 1402–1405. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis.
11.
Lovering, A. L.; Gretes, M.; Strynadka, N. C. J. Curr. Opin. Struc. Biology 2008, 18, 534–543. Structural details of the glycosyltransferase step of peptidoglycan assembly.
12.
Cheng, T. J. R.; Sung, M. T.; Liao, H. Y.; Chang, Y. F.; Chen, C. W.; Huang, C. Y.; Chou, L. Y.; Wu, Y. D.; Chen, Y.; Cheng, Y. S. E.; Wong, C. H.; Ma, C.; Cheng, W. C. Proc. Natl. Acad. Sci. USA 2008, 105, 431–436. Domain requirement of moenomycin binding to bifunctional transglycosylases and development of high-throughput discovery of antibiotics.
13.
Sung, M. T.; Lai, Y. T.; Huang, C. Y.; Chou, L. Y.; Shih, H. W.; Cheng, W. C.; Wong, C. H.; Ma, C. Proc. Natl. Acad. Sci. USA 2009, 106, 8824–8829. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli.
14.
Zhang, Y.; Fechter, E. J.; Wang, T. S. A.; Barrett, D.; Walker, S.; Kahne, D. E. J. Am. Chem. Soc. 2007, 129, 3080–3081. Synthesis of heptaprenyl-lipid IV to analyze peptidoglycan glycosyltransferases.
15.
Perlstein, D. L.; Zhang, Y.; Wang, T. S.; Kahne, D. E.; Walker, S. J. Am. Chem. Soc. 2007, 129, 12674–12675. The direction of glycan chain elongation by peptidoglycan glycosyltransferases.
141
16.
Yuan,Y.; Fuse, S.; Ostash, B.; Sliz, P.; Kahne D.; Walker, S. ACS Chem. Biol. 2008, 3, 429–436. Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotics design.
17.
Schwartz, B.; Markwalder, J. A.; Wang, Y. J. Am. Chem. Soc. 2001, 123, 11638–11643. Lipid II: Total synthesis of the bacterial cell wall precursor and utilization as a substrate for glycosyltransfer and transpeptidation by penicillin binding protein (PBP) 1b of Escherichia coli.
18.
VanNieuwenhze, M. S.; Mauldin, S. C.; Zia-Ebrahimi, M.; Winger, B. E.; Hornback, W. J.; Saha, S. L.; Aikins, J. A.; Blaszczak, L. C. J. Am. Chem. Soc. 2002, 124, 3656–3660. The first total synthesis of lipid II: The final monomeric intermediate in bacterial cell wall biosynthesis.
19.
Saha, S. L.; Van Nieuwenhze, M. S.; Hornback, W. J.; Aikins, J. A.; Blaszczak, L. C. Org. Lett. 2001, 3, 3575–3577. Synthesis of an orthogonally protected precursor to the glycan repeating unit of the bacterial cell wall.
20.
Ostash, B.; Walker, S. Curr. Opin. Chem. Biol. 2005, 9, 459–466. Bacterial transglycosylase inhibitors.
21.
Welzel, P.; Kunisch, F.; Kruggel, F.; Stein, H.; Scherkenbeck, J.; Hiltmann, A.; Duddeck, H.; Muller, D.; Maggio, J. E.; Fehlhaber, H.-W.; Seibert, G.; van Heijenoort, Y.; van Heijenoort, J. Tetrahedron 1987, 43, 585–598. Moenomycin A: minimum structural requirements for biological activity.
22.
Kurz, M.; Guba, W.; Vertesy, L. Eur. J. Biochem. 1998, 252, 500–507. Three-dimensional structure of moenomycin A: A potent inhibitor of penicillin-binding protein 1b.
23.
Fuse, S.; Tsukamoto, H.; Yuan, Y.; Andrew Wang, T.-S.; Zhang, Y.; Bolla, M.; Walker, S.; Sliz, P.; Kahne, D. ACS Chem. Biol. 2010, 5, 701–711. Functional and structural analysis of a key region of the cell wall inhibitor moenomycin.
142
24.
Chen, L.; Walker, D.; Binyuan, S.; Hu, Y.; Walker, S.; Kahne, D. Proc. Natl. Acad. Sci. USA 2003, 100, 5658–5663. Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate.
25.
Sofia, M. J.; Allanson, N.; Hatzenbuhler, N. T.; Jain, R.; Kakarla, R.; Kogan, N.; Liang, R.; Liu, D. S.; Silva, D. J.; Wang, H. M.; Gange, D.; Anderson, J.; Chen, A.; Chi, F.; Dulina, R.; Huang, B. W.; Kamau, M.; Wang, C. W.; Baizman, E.; Branstrom, A.; Bristol, N.; Goldman, R.; Han, K. H.; Longley, C.; Midha, S.; Axelrod, H. R. J. Med. Chem. 1999, 42, 3193–3198. Discovery of novel disaccharide antibacterial agents using a combinatorial library approach.
26.
Garneau, S.; Qiao, L.; Chen, L.; Walker, S.; Vederas, J. C. Bioorg. Med. Chem. 2004, 12, 6473–6494. Synthesis of mono- and disaccharide analogs of moenomycin and lipid II for inhibition of transglycosylase activity of penicillin-binding protein 1b.
27.
Adachi, M.; Zhang, Y.; Leimkuhler, C.; Sun, B. Y.; LaTour, J. V.; Kahne, D. E. J. Am. Chem. Soc. 2006, 128, 14012–14013. Degradation and reconstruction of moenomycin A and derivatives: dissecting the function of the isoprenoid chain.
28.
Shih, H. W.; Chen, K. T.; Chen, S. K.; Huang, C. Y.; Cheng, T. J. R.; Ma, C.; Wong, C. H.; Cheng, W. C. Org. Biomol. Chem. 2010, 8, 2586–2593. Combinatorial approach toward synthesis of small molecule libraries as bacterial transglycosylase inhibitors.
29.
Hara, H.; Suzuki, H. FEBS Lett. 1984, 168, 155–160. A novel glycan polymerase that synthesizes uncross-linked peptidoglycan in Escherichia coli.
30.
Vanheijenoort, Y.; Gomez, M.; Derrien, M.; Ayala, J.; Vanheijenoort, J. J. Bacteriol. 1992, 174, 3549–3557. Membrane intermediates in the peptidoglycan metabolism of Escherichia Coli - Possible roles of PBP-1b and PBP-3.
143
31.
Branstrom, A. A.; Midha, S.; Goldman, R. C. FEMS Microbiol. Lett. 2000, 191, 187–190. In situ assay for identifying inhibitors of bacterial transglycosylase.
32.
Schwartz, B.; Markwalder, J. A.; Wang, Y. J. Am. Chem. Soc. 2001, 123, 11638–11643. Lipid II: Total synthesis of the bacterial cell wall precursor and utilization as a substrate for glycosyltransfer and transpeptidation by penicillin binding protein (PBP) 1b of Escherichia coli.
33.
Schwartz, B.; Markwalder, J. A.; Seitz, S. P.; Wang, Y.; Stein, R. L. Biochemistry 2002, 41, 12552–12561. A kinetic characterization of the glycosyltransferase activity of Escherichia coli PBP1b and development of a continuous fluorescence assay.
34.
Liu, C. Y.; Guo, C. W.; Chang, Y. F.; Wang, J. T.; Shih, H. W.; Hsu, Y. F.; Chen, C. W.; Chen, S. K.; Wang, Y. C.; Cheng, T. J. R.; Ma, C.; Wong, C. H.; Fang, J. M.; Cheng, W. C. Org. Lett. 2010, 12, 1608–1611. Synthesis and evaluation of a new fluorescent transglycosylase substrate: Lipid II-based molecule possessing a dansyl-C20 polyprenyl moiety.
35.
Ye, X. Y.; Lo, M. C.; Brunner, L.; Walker, D.; Kahne, D.; Walker, S. J. Am. Chem. Soc. 2001, 123, 3155–3156. Better substrates for bacterial transglycosylases.
36.
Stembera, K.; Vogel, S.; Buchynskyy, A.; Ayala, J. A.; Welzel, P. ChemBioChem 2002, 3, 559–565. A surface plasmon resonance analysis of the interaction between the antibiotic moenomycin A and penicillin-binding protein 1b.
37.
(a) Anikin, A.; Buchynskyy, A.; Kempin, U.; Stembera, K.; Welzel, P.; Lantzsch, G. Angew. Chem. Int. Ed. Engl. 1999, 38, 3703–3707. Membrane anchoring and intervesicle transfer of a derivative of the antibiotic moenomycin A. (b) Kempin, U.; Hennig, L.; Knoll, D.; Welzel, P.; Muller, D.; Markus, A.; vanHeijenoort, J. Tetrahedron 1997, 53, 17669–17690. Moenomycin A: New chemistry that allows to attach the antibiotic to reporter groups, solid supports, and proteins.
144
38.
Koh, G. B.; Norton, A. K.; von Itzstein, M. Synthesis 1997, 1185–1188. Synthesis of C-4 halogen-substituted dervatives of Neu5Ac2en and KDN2en.
39.
溫文賢,設計與合成瑞樂沙衍生物以對抗流感病毒之神經胺酸脢:國立台灣大學化學所博士論文,2009。
40.
(a) Chandler, M.; Bamford, M. J.; Conroy, R.; Lamont, B.; Patel, B.; Patel, V. K.; Steeples, I. P.; Storer, R.; Weir, N. G.; Wright, M.; Williamson, C. J. J. Chem. Soc., Perkin Trans. 1 1995, 1173−1180. Synthesis of the potent influenza neuraminidase inhibitor 4-guanidino Neu5Ac2en. X-Ray molecular structure of 5-acetamido-4-amino-2,6-anhydro-3,4,5-trideoxy-D-erythro-L-gluco-nononic acid. (b) Kok, G. B.; Groves, D. R.; von Itzstein, M. Chem. Commun. 1996, 2017−2018. A facile and direct entry to functionalised Neu5Ac2en derivatives from the methyl ketoside of Neu5Ac methyl esters.
41.
Andrew B. Woodside; Zheng Huang; C. Dale Poulter. Org. Synth. 1993, 616−618. Diphosphoric acid, mono(3,7-dimethyl-2,6-octadienyl) ester (E)-, trisammonium salt.
42.
Ryu, Y.; Scott, A. I. Tetrahedron Lett. 2003, 44, 7499−7502. Self-condensation of activated malonic acid half esters: a model for the decarboxylative Claisen condensation in polyketide biosynthesis.
43.
Hecker, S. J.; Minich, M. L.; Lackey, K. J. Org. Chem. 1990, 55, 4904–4911. Synthesis of compounds designed to inhibit bacterial cell wall transglycosylation.
44.
Qiao, L.; Vederas, J. C. J. Org. Chem. 1993, 58, 3480–3482. Synthesis of a C-phosphonate disaccharide as a potential inhibitor of peptidoglycan polymerization by transglycosylase.
45.
Garneau, S.; Qiao, L.; Chen, L.; Walker, S.; Vederas, J. C. Bioorg. Med. Chem. 2004, 12, 6473–6494. Synthesis of mono- and disaccharide analogs of
145
moenomycin and lipid II for inhibition of transglycosylase activity of penicillin-binding protein 1b.
46.
劉朕與,合成Lipid II及其衍生物以研究細胞壁合成中的轉醣化過程:台灣大學化學系博士論文, 2007。
47.
許瑜芳,細菌轉醣化之研究:設計及合成轉醣酶之受質與抑制劑:台灣大學化學系碩士論文,2008。
48.
Neumann, J.; Thiem, J. Eur. J. Org. Chem. 2010, 900–908. Synthesis of Amino-Bridged Oligosaccharide Mimetics

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊