跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/18 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉傳山
研究生(外文):Chuan-Shan Yeh
論文名稱:綠竹異戊烯基轉移酶之分子生物學與生化學研究
論文名稱(外文):Molecular biological and biochemical studies of isopentenyltransferase in bamboo (Bambusa oldhamii)
指導教授:李平篤李平篤引用關係
口試委員:林耀輝鄭石通林棋財王恆隆楊健志
口試日期:2010-10-25
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:88
中文關鍵詞:異戊烯基轉移酶異戊烯基轉移酶異戊烯基轉移酶
外文關鍵詞:bambooAIPTcytokinin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞分裂素 Cytokinins (CKs) 為植物賀爾蒙,在植物生理上具有調控植物發育的重要功能,與生長素 (auxin) 協同作用促進細胞分裂、植株發芽,並影響癒瘡組織的生長型態。CKs亦可促進植株側芽生長與延遲老化。DMAPP: ATP路徑被認為是植物中 CKs 主要合成的路徑,該合成路徑是將 DMAPP 中的異戊烯側鏈 (isopentenyl side chain) 轉移至 AMP 中的 N6 位置而形成 isopentenyladenosine-5’-monophosphate (iPTP)。此反應是由 Adenylate isopentenyltransferases (AIPT) 所催化的。AIPT 所催化反應是 CKs 生合成速率決定步驟,因此 IPT 被認為是 CKs 生合成路徑之關鍵酵素。
以阿拉伯芥與水稻的 AIPT 序列為基準,設計出 degenerate primer,利用 degenerate PCR 方式得到核酸探針,以此探針進行綠竹 (Bambusa oldhamii) 基因組庫的篩選,得到具有 AIPT 基因的 DNA片段,該片段已知序列為 4.7 kb,內包含一個全長 1,035 bp 之 open reading frame (ORF),此 ORF 不具有 intron,轉譯成蛋白質分子量預估為 37,599 dalton,具有 344 的胺酸組成,命名為 BoAIPT1。BoAIPT1 與其他物種 AIPT 在親源相似程度具有47-71% identities。利用網路 ExPAsy 蛋白質體分析工具進行 BoAIPT1 生化特性的預測,發現 BoAIPT1 中的 Ser、Thr 與 Tyr 可能具有磷酸化與醣基化之轉譯後修飾作用。 BoAIPT1 等電點為 8.47,胞器定位預測結果顯示 BoAIPT1 應存在細胞質中。以 PLACE 啟動子分析工具進行 BoAIPT1 啟動子序列分析,發現 BoAIPT1 啟動子中可能具有生長素 (auxin)、吉貝素 (gibberellin) 與光感應相關的調控區。
利用北方雜合法分析 BoAIPT1在綠竹不同生長時期表現情況,發現出土後的綠竹筍 BoAIPT1表現量比未出土時高,經由Real-Time RT-PCR比較出土與未出土綠竹中,BoIPT1在不同部位的表現情況,發現綠竹出土後莖頂之BoAIPT1表現量最高。BoAIPT1與GFP融合進行洋蔥表皮細胞定位實驗,顯示BoAIPT1主要表現位置可能存在質體中。以E.coli 表現系統表現BoAIPT1並分析BoAIPT1酵素活性,由酵素動力學研究推測綠竹BoAIPT1以ATP與DMAPP為受質,啟動iP合成途徑。



Cytokinins (CKs) are a class of plant hormones that play a pivotal role in plant development. They induce cell division in the presence of auxins, and induce shoot formation on calli. They also release axillary buds from apical dominance, increase sink strength, and delay senescence. In the CKs synthesis pathway, the isopentenyl group is transferred from DMAPP to the N6of AMP, resulting in the production of isopentenyladenosine-5’-monophosphate (iPMP). This reaction is thought to be catalyzed by isopentenyltransferases (IPT). IPT is a key enzyme in CKs biosynthesis pathway.
A DNA fragment encoding isopentenyltransferase (IPT) was cloned and sequenced from genomic library of Bamboo (Bambusa oldhamii). Library screening by IPT specific probe from degenerate PCR using degenerate oligonucleotide primers based on the conserved sequences of Arabidopsis thaliana AtIPT and Oryza sativa OsIPT isozymes. The 4.7 kb genomic DNA fragment contains a 1,035 bp open reading frame encoding a molecular mass of 37,599 dalton protein with 344 amino acid named BoIPT1 revealed absence of intron in the frame. BoAIPT1 deduced amino acid sequence shares 47-71% identity to OsIPTs. Prediction of biochemical properties of BoAIPT1 amino acid sequence using ExPAsy (Expert Protein Analysis System) proteomics server revealed phosphorylation and glycosylation sites in Ser、Thr and Tyr residues. Isoelectric point of BoIPT1 is 8.47. Subcellular localization prediction of BoIPT1 is a cytosolic protein. Analysis BoAIPT1 promoter by PLACE promoter scanning tool revealed cis-acting regulatory DNA elements involved auxin、gibberellin and light response.
Using northern blot analysis on BoAIPT1 at various growth stages, demonstrated the expression level of BoAIPT1 is higher in bamboo shoot as compared to the etiolated shoot. Using Real-Time RT-PCR to compare the BoAIPT1expresion level in various parts of bamboo shoot and etiolated shoot, results revealed that the expression level was highest in the shoot. Results from GFP revealed that BoAIPT1 was located in the plastid of onion epidermal cell. Expression of BoAIPT1 in E.coli was used to perform enzyme assay, this revealed to ve similar with other reports regarding IPTs of different plants. This suggests that BoAIPT1 uses ATP and DMAPP as substarte to initiate the iP sysnthesis pathway.


目錄……………………………………………………………………………………a
縮寫表………………………………………………………………………………….i
中文摘要……………………………………………………………………………iii
英文摘要……………………………………………………………………………...iv
第一章 緒論……………………………………………………………..1
1.1 植物荷爾蒙….……………...……………....………………………….................1
1.2 細胞分裂素….……………...……………....………………………….................4
1.3 異戊烯轉移酶..……..………..………………….…..………………..…………..5
1.4 微生物 IPT 的研究…………...……….…………..…..………………………...6
1.5 植物 IPT 的研究..………………………………………..……………………...7
1.6 植物中 tZ 的合成…………………...…….…..…………………………......12
1.7 Cytokinin 訊息傳遞………………………….……………………………….16
1.8 Cytokinin oxidase/dehydrogenase 簡介………………………..……………….16
1.9 CKX 的發現與分類………………………….………………..………………17
1.10 CKX 基因在植物發育與演化扮演的角色……………………………………18
1.11 實驗源起 ………………………………………………...……………………20
第二章 材料與方法……………………………………………………22
2.1 植物材料..……………………….…………………..…………………………..22
2.2 綠竹基因庫……………………………………..…..……………………..22
2.3 大腸桿菌………..……………………………………………...……..…………22
2.4 選殖載體………………………………………………………………………...23
2.5 實驗藥品………………………………….…..…………………….…………...23
2.5.1 培養基…………………………………………………………………………23
2.6 實驗儀器………..……………………………………...………………………..24
2.7 實驗方法……………………………………………………………….………..25
2.7.1 綠竹染色體的純化……………..…………………………………….……….25
2.7.2 Degenerate primer 的設計……….…………………………………………26
2.7.3 Polymerase Chain Reaction……………...………………………………..27
2.7.4 DNA 洋菜膠體電泳分析……... ………...……..………………………….28
2.7.5 洋菜膠體 DNA 回收與純化……………………………………………….28
2.7.6 T-A cloning 接合反應……………………………………………………….28
2.7.7 勝任細胞製備………………………………………………………………...29
2.7.8 以質體轉形………………………………………………...………………...29
2.7.9 綠竹筍 cDNA 庫之篩選………………………….……………...………....30
2.7.9.1 DNA 探針製備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.9.2 基因組庫價數測定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.7.9.3 溶菌斑的轉印. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.9.4 雜合反應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.9.5呈色反應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.9.6 挑選正反應之溶菌斑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
2.7.9.7 噬菌體 DNA 之抽取. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Northen blot 分析法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
2.8.1 綠竹筍 total RNA 純化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
2.8.2 Total RNA 電泳與轉印. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8.3 Total RNA雜合反應與呈色. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9 Real-time RT-PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . ... . .35
2.10 BoAIP1T表現質體之建立. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . 35
2.10.1 重組蛋白質之誘導. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . ... . . . . . . . .35
2.11 電泳檢定系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.11.1 原態膠體電泳. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
2.11.2 SDS膠體電泳. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.11.3 Coomassie Brilliant Blue R-250 法. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .37
2.11.4 蛋白質電泳轉印法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.11.5 酵素免疫染色法 . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
2.11.6 蛋白質定量法. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …….39
2.12 BoAIPT1 活性測定.. . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . 39
2.13 BoAIPT1-GFP 細胞定位分析. . . . . . . . . . .. . . . . . . . . . . . .. . . . . . …….. . . . 40
第三章 結果與討論……………………………………………………42
3.1 DegeneratePCR.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
3.1.1 PCR 產物 250. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
3.1.2 PCR 產物 345. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
3.2 cDNA 庫篩選結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.3 基因組庫篩選結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.4 噬菌體 DNA 純化與酶切分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 綠竹 IPT基因 (BoAIPT1) . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .44
3.6 BoAIPT1 序列分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
3.6.1 BoAIPT1 基因中不存在插入子. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.2 BoAIPT1 生化性質預測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.3 BoAIPT1 轉譯後修飾預測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.4 BoAIPT1 演化親源性分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.5 BoAIPT1 Promoter 序列分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
3.7 綠竹筍中 BoAIPT1 表現情形分析. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 47
3.7.1 綠竹筍中 total RNA 純化結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7.2 綠竹筍 Northern blot 結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7.3 Real-time RT-PCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
3.8 BoAIPT1 重組蛋白表現情形 . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8.1在E.coli 中表現 BoAIPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
3.8.2 Western blot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8.3 重組蛋白質 BoAIPT1 活性分析. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .49
3.9 BoAIPT1-GFP 細胞定位分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
第四章 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .52
結果圖表集. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. .59

參考文獻
Abe, I., H. Tanaka., T. and H. Abe (2007) Noguchi, Enzymatic formation of unnatural cytokinin analogs by adenylate isopentenyltransferase from mulberry. Biochem. Biophys. Res. Commun. 355: 795-800

Akiyoshi. D.E., H. Klee., R.M. Amasino., E.W. Nester, and M.P. Gordon. (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998

Akiyoshi. D.E., D.A. Regier., and M.P. Gordon. (1987) Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169:4242–4248

Argueso, C.T., F.J. Ferreira, and J.J. Kieber. (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ. 32: 1147–1160

Astot. C., K., Dolezal., A., Nordstrom, Q., Wang, T., Kunkel, T., Moritz. N.H., Chua, and G. Sandberg. (2000) An alternative cytokinin biosynthesis pathway. Proc Natl Acad Sci USA 97:14778–14783

Barry, G.F., S.G., Rogers, R.T., Fraleyand, and L. Brand. (1984) Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81:4776–4780

Beaty, J.S, G.K.,Powell, D.A., Lica, D.A., Regier, E.M.S., MacDonald. N.G., Hommes. Morris and R.O. Tzs. (1986) a nopaline Ti plasmid gene from Agrobacterium tumefaciens associated with trans-zeatin biosynthesis. Mol Gen Genet 203:274–280

Bishopp A, Mahonen, AP, and Helariutta Y (2006) Signs of change: hormone receptors that regulate plant development. Development 133: 1857-1869

Blackwell JR, and Horgan R (1993) Cloned Agrobacterium tumefaciens ipt1 gene product, DMAPP : AMP isopentenyltransferase. Phytochemistry 34:1477–1481

Blackwell, J.R., and R . Horgan (1994) Cytokinin biosynthesis by extracts of Zea mays. Phytochemistry 35:339–342

Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72: 248–254

Brugiere N, S .Humbert, N. Rizzo, J. Bohn, and J.E. Habben. (2008) A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Cytokinin biosynthesis in maize. Plant Mol. Biol. 67: 215-229

Chen C.M, and Melitz D.K. (1979) Cytokinin biosynthesis in a cell-free system from cytokinin-autotrophic tobacco tissue cultures. FEBS Lett 107:15–20

Chen, C.M. (1997) Cytokinin biosynthesis and interconversion. Physiol. Plant. 101: 665–673

Chan, L.F., L.F.O. Chen, H.Y. Lu, C.H. Lin, H.C. Huang, M.Y. Ting, Y.M. Chang, C.Y. Lin, and M.T. Wu. (2009) Growth, yield and shelf-life of isopentenyltransferase (ipt)-gene transformed broccoli. Can. J. Plant Sci. 89(4): 701-711

Chen, L.F.O., J.Y. Hwang, Y.Y. Charng, C.W. Sun, and S.F. Yang. (2001) Transformation of broccoli (Brassica oleracea var. italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for postharvest yellowing retardation. Mol. Breed. 7: 243-257

Chiwocha, S.D.S., W.D.,Kingsley, R. F.,Gavin, L.G.,. Emilio, J.M., David, D. C., Nelson, J.M., Riseborough, S.M., Smith, and J.C., Stevens. (2009). Karrikins: A new family of plant growth regulators in smoke. Plant Science 177 (4): 252–256

Chu, H.M., T.P. Ko, and A.H. Wang. (2009) Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: distinctive binding affinity for purine and pyrimidine nucleotides. Nucleic Acids Res. 38: 1738-1748

Emery R.J, Q Ma, and C.A. Atkins. (2000) The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol 123:1593–1604

Faiss M, J., Zalubilova. M.,Strnad and T., Schmulling. (1997) Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant J. 12:401–415

Galichet, A., K. Hoyerova, M. Kaminek, and W. Gruissem. (2008) Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis. Plant Physiol. 146: 1155-1164

Gan, S. and R.M. Amasino. (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270: 1986-1988

Gomez-roldan, V.. S.Fermas, P.B., Brewer, and Puech-pag (2008) Strigolactone inhibition of shoot branching. Nature 455 (7210): 189

Golovko A, F., Sitbon E., Tillberg. and B., Nicander. (2002) Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana. Plant Mol Biol 49:161–169

Goring H, and A.A., Mardanov. (1976) Influence of nitrogen deficiency on K/Ca ratio and cytokinin content of pumpkin seedlings. Biochem Physiol Pflanz 170:261–264

Hardie D.G., D., Carling and M., Carlson. (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

Higuchi, M., M.S. Pischke, A.P. Mahonen, K. Miyawaki, Y. Hashimoto, M. Seki, M. Kobayashi, K. Shinozaki, T. Kato, S. Tabata, Y. Helariutta, M.R. Sussman, and T. Kakimoto. (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. USA 101: 8821–8826

Nemhauser, J.L., H.,Fangxin and J.. Chory .(2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126: 467–475

Jing P.F, .P, Chun,, and W., S.chong (2008) Molecular cloning of a putative gene encoding isopentenyltransferase from pingyitiancha (Malus hupehensis) and characterization of its response to nitrate. Tree Physiol 28: 899–904

Kakimoto T (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant Cell Physiol 42:677–685

Kasahara H, K., Takei, N., Ueda. S., Hishiyama, T., Yamaya , Y., Kamiya . S.,Yamaguchi and H.Sakakibara. (2004) Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem. 279:14049-14054

Kim, H.J., H. Ryu, S.H. Hong, H.R. Woo, P.O. Lim, I.C. Lee, J. Sheen, H.G. Nam, and I. Hwang. (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc. Natl. Acad. Sci. USA 103: 814–819.

Krall, L., M.,Raschke, M.H.,Zenk, and C.. Baron. (2002) The Tzs protein from Agrobacterium tumefaciens C58 produces zeatin riboside 5’- phosphate from 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate and AMP. FEBS Lett 527:315–318

Kurakawa, T., N. Ueda, M. Maekawa, K. Kobayashi, M. Kojima, Y. Nagato, H. Sakakibara, and J. Kyozuka. (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445: 652–655

Kuroha, T., H. Tokunaga, M. Kojima, N. Ueda, T. Ishida, S. Nagawa, H. Fukuda, K. Sugimoto, and H. Sakakibara. 2009. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. The Plant Cell 2: 3152-3169

Letham, D.S. (1994) Cytokinins as phytohormones: sites of biosynthesis, translocation, and function of translocated cytokinin. CRC, Boca Raton Light, M.E., V., Barend and J.,van Staden. (2005) Formation of a seed germination promoter from carbohydrates and amino Acids. Journal of Agricultural and Food Chemistry. 53 (15): 5936–5942

McKenzie MJ, V.V., Mett, Stewart P.H., Reynolds, and P.E., Jameson. (1998) Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter. Plant Physiol 116:969–977

Mok, D.W. and M.C. Mok. 2001. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 89–118

Morris, R.O., D.G., Blevins, J.T., Dietrich, R.C.,Durley, S.B., Gelvin, J., Gray, N.G., Hommes, M., Kaminek, U.,Mathesius, R.,Meilan, T.M.,Reinbott, and L. Sayavedra-Soto, (1993) Cytokinins in plant pathogenic bacteria and developing cereal grains. Aust J Plant Physiol 20:621–637

Murai, N., D.W.S. Mok, and M.C. Mok (eds.) (1994) Cytokinin biosynthesis in tRNA and cytokinin incorporation into plant RNA. CRC Press, Florida, 87 pp.

Naoya, H., T., Kentaro, K.,Takeshi. K.N., Tomoe, H.,Hiroaki. and S.,Hitoshi. (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75-83

Norbert, B., H, Sabrina, R.,Nancy B.,Jennifer, and E.H., Jeffrey. (2008) A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Plant Mol Biol 67:215–229

Powell GK, and R.O., Morris. (1986) Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: homology with Agrobacterium tumefaciens tmr and tzs loci. Nucleic Acids Res 14:2555–2565

Redig P, T., Schmulling, and H., Van Onckelen. (1996) Analysis of cytokinin metabolism in ipt transgenic tobacco by liquid chromatographytandem mass spectrometry. Plant Physiol 112:141–148

Rohdich, F., K., Kis, A., Bacher, and W., Eisenreich. (2001) The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Curr Opin Chem Biol 5:535–540

Rosenbaum, N., and M.L., Gefter. (1972) Delta 2 -isopentenylpyrophosphate: transfer ribonucleic acid 2 -isopentenyltransferase from Escherichia coli. Purification and properties of the enzyme. J Biol Chem 247:5675-5680

Sakakibara H, and K., Takei. (2002) Identification of cytokinin biosynthesis genes in Arabidopsis: a breakthrough for understanding the metabolic pathway and the regulation in higher plants. J Plant Growth Regul 21:17–23
Sakakibara, H., H. Kasahara, N. Ueda, M. Kojima, K. Takei, S. Hishiyama, T. Asami, K. Okada, Y. Kamiya, T. Yamaya, and S. Yamaguchi. (2005) Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc. Natl. Acad. Sci. USA 102: 9972–9977

Sakakibara, H. 2006. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57: 431–449

Sakamoto, T., H. Sakakibara, M. Kojima, Y. Yamamoto, H. Nagasaki, Y. Inukai, Y. Sato, and M. Matsuoka. 2006. Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol. 142: 54–62

Sakano, Y., Okada, A., Matsunaga, T., Suwama , T., Kaneko, K., Ito, H., Noguchi., and I., Abe. (2004) Molecular cloning, expression, and characterization of adenylate isopentenyltransferase from hop (Humulus lupulus L.). Phytochemistry 65:2439-2446

Samuelson, M. E., and C. M., Larsson. (1993) Nitrate regulation of zeatin riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium. Plant Sci 93:77–84

Shimizu-Sato, S., M. Tanaka, and H. Mori. 2009. Auxin-cytokinin interactions in the control of shoot branching. Plant Mol. Biol. 69: 429–435.

Skoog, F., and D.J., Armstrong. (1970) Cytokinins. Annu Rev Plant Physiol 21:359–384

Sun, J., Q.W., Niu, P., Tarkowski, B., Zheng, D.,Tarkowska. G., Sandberg. N.H., Chua, and J., Zuo. (2003) The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiol 131:167–176

Takei K, Sakakibara H, and Sugiyama T (2001a) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 276:26405–26410

Takei K, H., Sakakibara, M., Taniguchi, and T., Sugiyama. (2001b) Nitrogendependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol 42:85–93

Takei K, T., Takahashi, T.,S ugiyama, T. Yamaya and H.,Sakakibara. (2002) Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J Exp Bot 53:971–977

Takei, K., T. Yamaya, and H. Sakakibara. (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J. Biol. Chem. 279: 41866–41872

Tanaka, M., K. Takei, M. Kojima, H. Sakakibara, and H. Mori. (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 45: 1028–1036

Taya, Y., Y. Tanaka. and S,. Nishimura. (1978) 5’-AMP is a direct precursor of cytokinin in Dictyostelium discoideum. Nature 271:545–547

Tomoe KN, and S.,Hitoshi. (2009) Molecular basis for cytokinin biosynthesis. Phytochemistry 70:444–449

Vreman, H.J. and F. ,Skoog.. 1972. Cytokinins in Pisum transfer ribonucleic acid. Plant Physiol. 49: 848–49851

Yamada H, T., Suzuki, K., Terada, K.,Takei, K., Ishikawa, K.,Miwa, T., Yamashino. and T.,Mizuno. (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023

Yang, J., J.,Zhang, Z., Wang, Q.,Zhu, and W.,Wang. (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315–323


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top