(3.230.154.160) 您好!臺灣時間:2021/05/07 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪廖啔靖
研究生(外文):Chi-Jing Hong-Liao
論文名稱:重矽摻雜之砷化銦與有序排列磷化銦鎵之光學特性研究
論文名稱(外文):Studies on the Optical Characteristics of Heavily Si-doped InAs and Ordered InGaP
指導教授:林浩雄林浩雄引用關係
口試委員:黃朝興毛明華鄭舜仁王智祥
口試日期:2011-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:97
中文關鍵詞:拉曼散射光激螢光譜矽摻雜之砷化銦磷化銦鎵有序排列屏蔽效應湯姆斯費米波向量
外文關鍵詞:Raman scatteringPhotoluminescenceSi-doped InAsInGaPOrdering effectScreening effectThomas-Fermi wave-vector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究以分子束磊晶法成長的重矽摻雜砷化銦與以有機金屬化學氣相沉積法成長的有序排列磷化銦鎵之光學特性。第一部分探討重矽摻雜砷化銦的拉曼頻譜,實驗中除了發現LO聲子與電漿作用所形成的PLP耦合模態之外,還發現了由於屏蔽效應減弱所導致的LO模態。隨著濃度提升,PLP模態位置由LO模態逐漸往TO模態移動,此現象與介電方程式推導的模態趨勢相違背,我們將此現象歸因於由於晶格振盪導致內部感應電場產生,當電場的空間變化速度太大,使得載子無法有效屏蔽時,PLP模態回復接近接近LO模態位置;隨著濃度提升,感應電場逐漸被有效屏蔽,PLP模態位置將往TO模態移動。而屏蔽效應的強弱由模態的波向量與湯姆斯費米波向量值決定,經由計算比較,我們發現LO模態的出現是來自於表面累積層的散射,PLP模態則來自於非累積層的貢獻。當濃度高於5x10^19 cm^-3,我們發現LO模態不遵守拉曼選擇規則,此現象可能由於摻雜濃度較高時,費米能階高於表面能階,表面形成的空乏層誘發電場所導致。另外,我們從傅立葉轉換紅外線光譜儀所量測的反射頻譜推知電漿頻率的位置,並與拉曼量測所得到的PLP模態位置相近。
本論文的第二部分研究有序排列磷化銦鎵的拉曼散射與光激螢光譜。我們經由室溫的光激螢光譜與X-ray繞射頻譜以理論公式計算樣品的有序排列程度,並透過拉曼頻譜上相對應的模態強度推算其深谷數值(valley depth ratio),發現隨著有序排列的程度增加,拉曼頻譜上InP-like與GaP-like LO模態之間的凹谷深度也將隨之上升,導致深谷數值下降,此現象與文獻上的趨勢相同。此外,當雷射光源沿著[1-10]極化方向入射時,我們可以從拉曼頻譜上觀察到來自(1-11)和(-111)晶格有序排列所形成C3V對稱結構的354和380 cm-1峰值,然而當極化方向旋轉九十度沿著[110]方向時,380cm-1的聲子模態依舊可以被觀察到,我們推測其來自於(111)和(-1-11)平面上的有序排列。

This thesis presents the optical characteristics of heavily Si-doped InAs, grown by gas-source molecular beam epitaxy, and InGaP, grown by metal-organic vapor phase epitaxy. In the first portion of this thesis, we report the Raman scattering of the heavily Si-doped InAs. The Raman spectra show coupled plasmon LO-phonon (PLP) mode and unscreened LO mode. The frequency of the PLP mode is slightly lower than that of the LO mode and gradually reduces to frequency of the TO mode when the carrier density increases, in conflict with the PLP mode equation. This abnormal behavior becomes less significant when we replaced the 514-nm laser by 632-nm laser. By comparing the LO wave-vector and the Thomas-Fermi screening wave-vector of each InAs bulk layer, we found that the screening effect is responsible for this abnormal behavior. The unscreened LO mode is attributed to the surface accumulation layer, whose thickness is too short to screen the LO mode. We also observed the forbidden unscreened LO mode for the samples with a carrier density higher than 5x10^19/cm^3, which is ascribed to the resonant enhanced scattering induced by space charge field of the surface layer. FTIR was used to measure the reflectance of the samples to obtain the plasma frequency. The result is in good agreement with the plasmon frequency determined from the Raman scattering.
In the second portion of this thesis, ordered InGaP material has been studied by Raman scattering and photoluminescence (PL) measurement. We used the energy gap determined from room temperature PL and the lattice mismatch determined from XRD to calculate the degree of order for each InGaP samples. Valley depth (b/a) ratio, determined from the unresolved GaP-like and InP-like LO modes, decreases with the increasing ordering degree and is close to the values reported in literature. Along [1-10] polarization, we observed two additional peaks at 354 cm-1 and 380 cm-1, which has been reported in literature and are relevant to the A(Z) mode of C3v symmetry resulting from the ordering arrangement on (1-11) or (-111) plane. The most striking is that the 380 cm-1 additional peak also appears when the measurement was taken along [110] polarization, indicating that the samples could contain ordering arrangement on (111) or (-1-11) plane.

中文摘要.....................................................................................................................I
Abstract..………………......................……………………………………...……III
Contents………………………………………........…....…….…….…...V
Table Captions..........................................VIII
Figure Captions............................................X

Chapter 1 Introduction
1.1 Background and Motivation...……………………….…....….…………………1
1.2 Raman, infrared, and photoluminescence spectroscopy....…................6
1.3 Thesis Outline……………………………………………...................................7

Chapter 2 Experimental Apparatus
2.1 Gas-Source Molecular beam epitaxy (GSMBE) and metal-organic chemical vapor deposition (MOCVD).............................................................................11
2.2 Raman scattering spectroscopy.......................................................................12
2.2.1 Principle and two Raman systems……….................................................12
2.2.2 The slit and the power selection of the micro-Raman system...................14
2.3 Photoluminescence (PL) spectrum system………….…....……………....…15
2.3.1 Principle and measurement set-up……….................................................15
2.3.2 The slit-dependent FWHM of the PL system............................................17
2.4 Fourier Transform Infrared (FTIR) Spectroscopy………………........……..17
2.5 van Der Pauw measurement..………………….…………………….….….18

Chapter 3 Raman scattering spectroscopy
3.1 The principle of the Raman scattering………………………………………...29
3.2 Raman spectra of the GaAs bulk and Si-doped InAs………………………..32
3.3 Raman study of ordered InGaP on GaAs……….....................………………..38
3.2.1 The valley depth parameter b/a ratio…………………………………….39
3.2.3 The mode frequency shift and the doublet LO modes………………….41

Chapter 4 The Studies of FTIR and Photoluminescence spectroscopy
4.1 Fourier Transform Infrared (FTIR) spectroscopy……………….………….....55
4.1.1 The electro-magnetic wave in the semi-conductor………………………55
4.1.2 The phonon effect in the dielectric function..……………...……….……56
4.1.3 The free carrier effect in the dielectric function.…....…………...………58
4.1.4 The method of the transmission matrixes for multi-layer structure..........59
4.1.5 The reflectance spectra of the InAs and GaAs substrate..……….....……61
4.1.6 The reflectance spectra of the Si-doped InAs bulk..…………..…...……62
4.2 Photoluminescence study of ordered InGaP on SI-GaAs.........62
4.2.1 The degree of order (η).................................…………………………….63
4.2.2 Low-temperature photoluminescence spectra………......................…….66
4.2.2 Temperature dependence of photoluminescence spectra………….....….69

Chapter 5 Conclusions..........................................................……………….87
References……….……………..……….…………….………...89


[1] A. Mooradian and G. B. Wright, “Observation of the Interaction of plasmons with longitudinal optical phonons in GaAs, ” Phys. Rev. Lett., vol. 16, pp. 999-1001, 1966.
[2] V. I. Zemski, E. L. Ivchenko, D. N. Mirlin and I. I. Reshina, “Dispersion of plasmon-phonon modes in semiconductors: Raman scattering and infrared spectra, ” Solid State Comm. vol. 16, pp. 221-225, 1975.
[3]A. Pinczuk, G. Abstreiter, R. Trommer and M. Cardona, “Raman scattering by wavevector dependent coupled plasmon-LO phonon of n-GaAs, ” Solid State Comm. vol. 21, pp. 959-962, 1977.
[4]C. K. N. Patel and R. E. Slusher, “Light scattering by plasmons and Landau levels of electron gas in InAs, ” Phys. Rev. vol. 167, pp. 413-415, 1968.
[5]S. Buchner and E. Burstein, “Raman scattering by wave-vector-dependent LO-phonon-plasmno modes in n-InAs, ” Phys. Rev. Lett., vol. 33, pp.908-911, 1974.
[6] Y. B. Li, I. T. Ferguson, R. A. Stradling and R. Zallen, “Raman scattering by plasmon-phonon modes in highly doped n-InAs grown by molecular beam epitaxy, ” Semicond. Sci. Technol., vol. 7, pp. 1149-1154, 1992.
[7]R. Cusco, L. Artus, S. Hernandez and J. Ibanez, “Raman scattering by LO phonon-plasmon coupled modes in n-type In0.53Ga0.47As, ”Phys. Rev. B., vol. 65, pp. 035210-1-035210-7, 2001.
[8]Y. F. Yang, C. C. Hsu, H. J. Ou, T. C. Huang and E. S. Yang, “Fabrication and characteristics of a GaInP/GaAs heterojunction bipolar transistor using a selective buried sub-collector, ” IEEE Trans. Electron Dev., Vol. 44, pp. 2122-2127, 1997.
[9]J. Shirakashi, T. Azuma, F. Fukuchi, M. Konagai and K. Takahashi, “Characterization of heavily carbon-doped GaAs with a hole concentration of the order of 1021 cm-3 grown by metalorganic molecular beam epitaxy and its application to InGaP/GaAs heterojunction bipolar transistors, ” J. Cryst. Growth, vol. 150, pp. 585-590, 1995
[10]Y. G. Kim, J. H. Bae, C. Park, C. W. Kim, S. I. Kim, B.G. Min, J. M. Lee, H. J. Kim and K. H. Lee, “An X-band InGaP GaAs HBT MMIC oscillator, ” Current Applied Physics, vol. 5, pp. 249-253, 2005
[11]Y. Matsuoica and E. Sano, “InP/InGaAs double-heterojunction bipolar transistor for high-speed ICs and OEICs, ” Solid-State Elecrronics, vol. 38, pp. 1703-1709, 1995.
[12]T. Oka, K. Ouchi, H. Uchiyamma, T. Tanniguchi, K.Mochizuki, T. Nakamura, “High-Speed InGaP/GaAs heterojunction bipolar transistors with buried SiO2 using WSi as the base electrode, ” IEEE Electron Dev. Lett., vol. 18, No.4, pp. 154-156, 1997.
[13]J. Chen, J. R. Sites, I. L. Spain, M. J. Hafich and G. Y. Robinson, “Band offset of GaAs/In0.48Ga0.52P measured under hydrostatic pressure,” Appl. Phys. Lett., vol. 58, pp. 744-746 , 1991.
[14]Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistors, ” IEEE Trans. Electron Dev., vol. 41, pp. 643-647, 1994.
[15]P. Ernst, C. Geng, F. Scholz, H. Schweizer, Y. Zhang and A. Msacarenhas, “Band-gap reduction and valence-band splitting of ordered GaInP2, ” Appl. Phys. Lett., vol. 67, pp. 2347-2349, 1995.
[16]S. H. Wei, D. B. Laks and A. Zunger, “Dependence of the optical properties of semiconductor alloys on the degre of long-range order, ” Appl. Phys. Lett., vol. 62, pp. 1937-1939, 1993.
[17]K. A. Mader and A. Zunger, “Effects of atomic clustering on the optical properties of III-V alloys, ” Appl. Phys. Lett., vol. 64, pp. 2882-2884, 1994.
[18]J. Bettini, M. M. G. de Carvalho, M. A. Cotta, D. Ugarte, “ Role of V/III ratio on atomic ordering and surface morphology of InGaP layers grown by chemical beam epitaxy, ” Surface Science, vol. 540, pp. 129-135, 2003.
[19]G. R. Moriarty, M. Kildemo, J. T. Beechinor, M. Murtagh, P. V. Kelly, G. M. Crean and S. W. Bland, “Optical and structural properties of InGaP heterostructures, ” Thin Solid Films, vol. 364, pp. 244-248, 2000.
[20]M. Kondow, H. Kakibayashi, S. Minagawa, Y. Inoue, T. Nishino and Y. Hamakawa, “Influence of growth temperature on crystalline structure in Ga0.5In0.5P grown by organometallic vapor phase epitaxy, ” Appl. Phys. Lett., vol. 53, pp. 2053-2055, 1988.
[21]S. H. Wei and A. Zunger, “Band-gap narrowing in ordered and disordered semiconductor alloys, ” Appl. Phys. Lett., vol. 56, pp.662-664, 1990.
[22]A. Krost, N. Esser, H. Selber, J. Christen, W. Richter, D. Bimberg, L.C. Su and G.B. Stringfellow, “Identification of ordered and disordered Ga0.51In0.49P domains by spatially resolved luminescence and Raman spectroscopy, ” J. Vac. Sci. Technol. B, vol. 12, pp. 2558-2561, 1994
[23]M. C. Delong, D.J. Mowbray, R.A. Hogg, M.S. Skolnick, M. Hopkinson, J.P.R. David, P.C. Taylor, S.R. Kurtz and J.M. Olson, “Photoluminescence, photoluminescence excitation, and resonant Raman spectroscopy of disordered and ordered Ga0.52In0.48P, ” J. Appl. Phys., vol. 73, pp. 5163-5172, 1993
[24]A. Sasaki, K. Tsuchida, Y. Narukawa, Y. Kawakami, S.G. Fujita, Y. Hsu and G.B. Stringfellow, “Ordering dependence of carrier lifetimes and ordered states of Ga0.52In0.48P/GaAs with degree of order 0.55, ” J. Appl. Phys., vol. 89, pp. 343-347, 2001.
[25]C. Ebert, Z. Pulwin, D. Byrnes, A. Paranjpe, W. Zhang, “Tellurium doping of InGaP for tunnel junction applications in triple junction solar cells, ” J. Cryst. Growth, vol. 315, pp. 61-63, 2011.
[26]M. C. Wu, S. C. Lu, C. Y. Lee and Y.C. Yang, “Interface abruptness and LED performance of the A1GaAs/ InGaP single heterostructure grown by liquid-phase epitaxy, ” J. Cryst. Growth, vol. 112, pp. 803-807, 1991.
[27]C. C. Hu, C.S. Sheu and M.K. Lee, “The fabrication of InGaP/Si light emitting diode by metalorganic chemical vapor deposition, ” Materials Chemistry and Physics, vol. 48, pp. 17-20, 1997.
[28]N.Dharmarasu, A. Khan, M. Yamaguchi, T. Takamoto, T. Ohshima and H. Itoh, M. Imaizumi and S. Matsuda, “Effects of proton irradiation on n+p InGaP solar cells, ” J. Appl. Phys., vol. 91, pp. 3306-3311, 2002.
[29]P. M. Mooney, “Deep donor levels (DX centers) in III-V semiconductors, ” J. Appl. Phys., vol. 67, pp. R1-R26, 1990
[30]J. C. Fan, J. C. Wang and Y. F. Chen, “Persistent photoconductivity in InGaP/GaAs heterostructures, ” Appl. Phys. Lett., vol. 75, pp. 2978-2980, 1999.
[31]S. H. Kowk, P. Y. Yu, J. Zeman, S. Jullian, G. Martinez and K. Uchida “Optical studies of GaInP(ordered)/GaAs and GaInP(ordered)/GaP/GaAs heterostructures , ” J. Appl. Phys., vol. 84, pp. 2846-2854, 1998.
[32]R. Kugela, J. Novak and M. Kucera, “Zn-Doped InGaP Grown by the LP-MOCVD, ” Journal of Electronic Materials, vol. 26, pp. 7-10, 1997.
[33]M. Ikeda and K. Kaneko, “Selenium and zinc doping in Ga0.5In0.5P and (Al0.5Ga0.5)0.5In0.5P grown by metalorganic chemical vapor deposition ,” J. Appl. Phys., vol. 66, pp. 5285-5289, 1989.
[34]J. P. Goral, S. R. Kurtz, J. M. Olsen and A. Kibbler, “Transmission electron microscopy study the effect of Selenium doping on the ordering of GalnP2, ” J. Electron. Mater., vol. 19,pp. 95-99, 1990.
[35]A. Gomyo, H. Hotta, I. Hino, S. Kaeata, K. Kobatashi and T. Suzuki, “ Silicon and Selenium doping effects on band-gap energy and sublattice ordering in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 28, pp. L1330-L1333, 1989.
[36]M. Suzuki, Y. Nishikawa, M. Ishawa and Y. Kokubun, “Effects of substrate misorientation on doping characteristics and band gap energy for InGaA1P crystals grown by metalorganic chemical vapor deposition, ” J. Cryst. Growth, vol. 113, pp. 127-130, 1991.
[37]F. Sheffer, F. Buchali, A. Lindner, Q. Liu, A. Wiersch and W. Prost, “High doping performance of lattice matched GaInP on GaAs, ” J. Cryst. Growth, vol. 124, pp. 475-482, 1992.
[38]T.Suzuki, A. Gomyo, S. Iijima, K. Kobayashi, S. Kawata, I. Hino and T. Yuasa, “ Band-gap energy anomaly and sublattice ordering in InGaP and AlGaInP grown by metalorganic vapor phase epitaxy, ” Jpn. J. Appl. Phys., vol. 27, pp. 2098-2106, 1988.
[39]H. Asahi, S. Emura, S. Gonda, Y. Kawamura and H. Tanaka, “Raman scattering in InGaAlP layers grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 65, pp. 5007-5011, 1989.
[40]P. Verma, S. C. Abbi and K. P. Jain, “Raman scattering probe of anharmonic effects in GaAs, ” Phys. Rev. B, vol. 51, pp. 16660-16667, 1995
[41]V. Swaminathan, A. Jayaraman, J. L. Zolko and R. A. Stall, “ A comparative study of (100) GaAs films grown by liquid-phase-epitaxy, molecular-beam-epitaxy and metal-organic chemical vapor deposition by Raman spectroscopy, ” Material Letters, vol. 3, pp. 325-330,1985
[42]M. Balkanski, R. F. Wallis and E. Haro, “ Anharmonic effects in light scattering due to optical phonons in silicon, ” Phys. Rev. B, vol. 28, pp. 1928-1934, 1983
[43]L. J. van der PAUW, “A method of measuring the resistivity and coefficient on lamellae of arbitrary shape, ” Philips Technical Review, vol. 20, pp. 220-224, 1958.
[44]V. Swaminathan and A. T. Macrander, “Material aspect of GaAs and InP based structures, ” Prentice Hall, 1991.
[45]L. Botha, P. Shamba, and J. R. Botha, “Electrical characterization of InAs thin films, ” Phys. Stat. Sol. (c), vol. 5, pp.620-622, 2008.
[46]G. Irmer, “Local crystal orientation in III-V semiconductors: polarization selective Raman microprobe measurements, ” J. Appl. Phys., vol. 76, pp. 7768-7773, 1994.
[47]M. Kondow, S. Mingawa and S. Satoh, “Raman scattering from AlGaInP, ” Appl. Phys. Lett., vol. 51, pp. 2001-2003, 1987.
[48]G. Abstreiter, E. Bauser, A. Fischer and K. Ploog, “Raman spectroscopy-a versatile tool for characterization of thin film and heterostructures of GaAs and AlxGa1-xAs, ” Appl. Phys., vol. 16, pp. 345-352, 1978.
[49]R. Carles, N. Saint-Cricq, J. B. Renucci, M. A. Renucci, and A. Zwick, “Second-order Raman scattering in InAs, ” Phys. Rev. B., vol. 22, pp. 4804-4815, 1980.
[50]D. J. Olego and H. B. Serreze, “Photoluminescence and Raman scattering investigations of implanted and thermally annealed InP, ” J. Appl. Phys., vol. 58, pp. 1979-1981, 1985.
[51]Kittel, Introduction to solid state physics, 7th, Wiley India Pvt. Ltd., 2009
[52]D. E. Aspnes and A. A. Studna , “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, ” Phys. Rev. B., vol. 27, pp. 985-1009, 1983.
[53]A. Pinczuk and E. Burstein, Light scattering spectra of solids, Proc. Internat. Conf. Light Scattering spectra of solids, NewYork 1968, Ed. G. B. Wright, Springer-Verlag, Berlin 1969, pp.429-438.
[54]Murray. S. Daw and D. L. Smith, “Relation between the common anion rule and the defect model of schottky barrier formation, ” Solid State Communications, vol. 37, pp. 205-208, 1981.
[55]T. D. Veal and C. F. McConville, “Profiling of electron accumulation layers in the near-surface region of InAs (110), ” Phys. Rev. B, vol. 64, pp. 085311-1-085311-8, 2001
[56]R. C. C. Leite and J. F. Scott, “Resonant surface Raman scattering in direct-gap semiconductors, ” Phys. Rev. Lett. vol. 22, pp. 130-132, 1969.
[57]M. Kondow and S. Minagawa, “ Study on photoluminescence and Raman scattering of GaInP and AlInP grown by organometallic vapor-phase epitaxy, ” J. Appl. Phys., vol. 64, pp. 793-796, 1988.
[58]A. Gomyo, K. Kobayashi, S. Kawata, I. Hino and T. Suzuki, “ Studies of GaxIn1-xP layers grown by metalorganic vapor phase effects of V/III ratio and growth temperature, ” J. Cryst. Growth, vol. 77, pp. 367-373, 1986.
[59]P. H. Borcherds, K. Kunc, G. F. Alfrey and R. L. Hall, “The lattice dynamics of gallium phosphide, ” J. Phys. C: Solid State Phys., vol. 12, pp. 4699-4706, 1979
[60]P. H. Borcherds, G. F. Alfrey, D. H. Saunderson and A. D. B. Woods, “Phonon dispersion curves in indium phosphide, ” J. Phys. C: Solid State Phys., vol. 8, pp. 2022-2030, 1975.
[61] H. Lee, D. Biswas, M. V. Klein, H. Morkoc, D. E. Aspnes, B. D. Choe, J. Kim, and C. O. Griffiths, “Study of strain and disorder of InxGa1-xP/(GaAs, graded Gap)(0.25≦x≦0.8) using spectroscopi ellipsometry and Raman spectroscopy, ” J. Appl. Phys., vol.75, pp.5040-5051, 1994.
[62]R. P. Feynman, R. B. Leighton and M. L. Sands, “The Feynman lectures on physics, ” Addison-Wesley Pub. Co., 1965
[63]J. A. A. Engelbrechta and K. T. Hillieb, “Anomalous peaks in reflectance spectra of some GaAs substrate, ” Physica B, vol. 340-342, pp. 320-323, 2003
[64]U. Heim and P. Hiesinger, “Luminescence and excitation spectra of exciton emission in GaAs, ” phys. stat. sol. (b), vol. 66, pp. 461-470, 1974
[65]D. J. Ashen, P. J. Dean, D. T. J. Hurle, J. B. Mullin and A. M. White, “The incorporation and characterization of acceptors in epitaxial GaAs, ” J. Phys. Chem. Solids., vol. 36, pp. 1041-1053, 1975
[66]P. Ernst, C. Geng, F. Scholz, H. Schweizer, “Ordering in GaInP2 studied by optical spectroscopy, ” Phys. Stat. Sol. (b), vol. 193, pp. 213-229, 1996
[67]H. Sai, H. Fujikura and H. Hasegawa, “Study of reflection high-energy electron diffraction oscillation for optimization of tertiarybutylphosphine-based molecular beam epitaxial growth of In0.48Ga0.52P on GaAs, ” Jpn. J. Appl. Phys., vol. 38, pp. 824-831, 1999
[68]X.Z. Shang, L.W. Guo, S.D. Wu, P.J. Niu, Q. Huang and J.M. Zhou, “Optical properties of highly disordered InGaP by solid-source molecular beam epitaxy with a GaP decomposition source, ” J. Cryst. Growth, vol. 262, pp. 14-18, 2004
[69]S.F. Yoon, K.W. Mah, H.Q. Zheng and P.H. Zhang, “Effects of substrate temperature on the properties of In0.48Ga0.52P grown by molecular-beam epitaxy using a valved phosphorus cracker cell, ” J. Cryst. Growth, vol. 191, pp. 613-620, 1998
[70]S. F. Yoon, Y. B. Miao, K. Radhakrishnan and H. L. Duan, “The effects of Si doping in In0.52Al0.48As layers grown lattice matched on InP substrates, ” J. App. Phys., vol. 78, pp. 1812-1817, 1995.
[71]S. M. Olsthoorn, F. A. J. M. Driessen, A. P. A. M. Eijkelenboom and L. J. Gilingi, “Photoluminescence and photoluminescence excitation spectroscopy of Al0.48In0.52As, ” J. App. Phys., vol. 73, pp. 7798-7803, 1993.
[72]Takeshi Kurimoto and Noriaki Hamada, “Electronic structure of the (GaP)1/(InP)1 (111) strained-layer superlattice, ” Phys. Rev. B, vol. 40, pp. 3889-3895, 1989.
[73]D. M. Eagles, “Optical absorption and recombination radiation in semiconductors due to transitions between hydrogen-like acceptor impurity levels and the conduction band, ” J. Phys. Chem. Solids, vol. 16, pp.76-83, 1960


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔