跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳煜達
研究生(外文):Yu-Da Chen
論文名稱:離子高分子金屬複合材料在可調變光衰減器的應用
論文名稱(外文):Application of Ionic Polymer Metallic Composite in Variable Optical Attenuator
指導教授:蘇國棟
指導教授(外文):Guo-Dung John Su
口試委員:林晃巖何志浩
口試日期:2011-06-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:56
中文關鍵詞:離子高分子金屬複合材料可調變光衰減器
外文關鍵詞:Ionic Polymer Metallic CompositeVariable Optical Attenuator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
IPMC所指的是一種離子高分子金屬複合材料,它可以被電壓所致動,隨著電壓的增加使其形狀逐漸彎曲。我們將使用離子高分子金屬複合材料在自由空間中來做為可調變光衰減器的角色。我們將量測離子高分子金屬複合材料的元件插入損耗、光衰減範圍、偏振相關損耗、波長相關損耗以及反應時間。我們發現離子高分子金屬複合材料在2伏特的驅動電壓以下提供明顯的致動效果。我們所使用的高分子金屬複合材料元件表面粗糙度為0.66 μm,元件插入損耗為2.89 dB。此高分子金屬複合材料的光衰減範圍可高達80 dB,其解析度為每伏特40 dB。元件的偏振相關損耗範圍為0.1 dB到0.6 dB。元件在1527 nm到1563 nm光波段的波長相關損耗範圍為0.15 dB到0.85 dB。元件的反應時間和鬆弛時間分別為0.5秒和0.3秒。元件的致動電壓為2伏特,而元件的功率損耗為5.78 mW。

Ionic-polymer-metallic composite (IPMC) can be actuated by low voltage and be bended gradually with increasing driving voltage. We used IPMC as a variable optical attenuator (VOA) in free space configuration. We measured the insertion loss, optical attenuation range, polarization dependent loss (PDL), wavelength dependent loss (WDL), and response time. We concluded that our IPMC can be actuated by less than two volts. The surface roughness of our IPMC was about 0.66 μm and the insertion loss was 2.89 dB, and optical attenuation range of our device is as great as 80 dB with 40 dB/volt resolution. The range of PDL is about from 0.1 dB to 0.6 dB. The wavelength dependent loss is from 0.15 dB to 0.85 dB in the wavelength range from 1527 nm to 1563 nm. Response time and relaxation time of the device are about 0.5 second and 0.3 second. The actuation voltage was 2 volts and the power consumption was 5.78 mW.

誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Variable Optical Attenuator 1
1.2 Ionic-Polymer-Metallic Composite 4
1.3 Outline of the Thesis 8
Chapter 2 Fabrication 9
2.1 IPMC Fabricated from Nafion Solution 9
2.2 IPMC Fabricated from Nafion Membrane 25
2.3 Testing 27
Chapter 3 Measurment 31
3.1 Insertion Loss 31
3.2 Surface Roughness 35
3.3 Optical Attenuation Range 37
3.4 Polarization Dependent Loss 40
3.5 Wavelength Dependent Loss 45
3.5 Response Time 48
Chapter 4 Conclusion and Future Work 51
4.1 Conclusion 51
4.2 Future Work 53
REFERENCE 54


[1]Sumitomo Osaka Cement Co., http://www.socnb.com/techbox/hproduct_e/opto.html
[2]K. Isamoto, K. Kato, A. Morosawa, C. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE Journal on Selected Topics in Quantum Electronics, 10(3): pp. 570-578,
2004.
[3]V. Aksyuk, B. Barber, C. R. Giles, R. Ruel, L. Stulz, and D. Bishop, “Low insertion loss package and fiber connectorised MEMS reflective optical switch,” Electron. Lett., vol. 34, no. 14, pp. 1413–1414, 1998.
[4]C. Ji, Y. Yee, J. Choi, and J. Bu, “Electromagnetic variable optical attenuator,” IEEE/LEOS Int. Conf. Optical MEMS, pp. 49–50, 2002.
[5]S. Yun, Y. Kim, H. Kown, W. Kim, J. Lee, Y. Lee, and S. Jung, “Optical characteristics of a micromachined VOA using successive partial transmission in a silicon optical leaker,” IEEE/LEOS Int. Conf. Optical MEMS, pp. 51–52, 2002.
[6]C. Kim, N. Park, and Y. Kim, “MEMS reflective type variable optical attenuator using off-axis misalignment,” IEEE/LEOS Int. Conf. Optical MEMS, pp. 55–56, 2002.
[7]C. Marxer, B. de Jong, and N. de Rooij, “Comparison of MEMS variable optical attenuator designs,” IEEE/LEOS Int. Conf. Optical MEMS, pp. 189–190, 2002.
[8]W. Noell, P Clerc, L. Dellmann, B. Guldimann, H. Herzig, O. Manzardo, C. Marxer, K Weible, R. Dandliker, and N. de Rooij, Applications of SOI-based optical MEMS,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 148–154, Jan.–Feb. 2002.
[9]J. Ford and J. Walker, “Dynamic spectral power equalization using micro-opto-mechanics,” IEEE Photon. Technol. Lett., vol. 10, pp. 1440–1442, Oct. 1998.
[10]Y. Bar-Cohen, S. Leary, A. Yavrouian, K. Oguro, S. Tadokoro, J. Harrisson, J. Smith, and J. Su, “Challengs to the transition of IPMC artificial muscle,” MRS Symposium, Nov. 1999.
[11]M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles,” Smart Materials and Structures, vol. 7, no. 6, Dec. 1998.
[12]A. Punning, M. Kruusmaa, and A. Aabloo, “Surface resistance experiments with IPMC sensors and actuators,” Sensors and Actuators, A 133 pp.200-209, 2007.
[13]F. Carpi and E. Smela, Biomedical Applications of Electroactive Polymer Actuators, John Wiley & Sons, 2009.
[14]R. P. Hamlen, C. E. Kent, and S.N. Shafer, “Electrolytically Activated Contractile Polymer,” NATURE, VOL. 206 pp. 1149-1150, 1965.
[15]K. Jung, J. Nam, and H. Choi, “Investigations on actuation characteristics of IPMC artificial muscle actuator,” Sensors and Actuators A: Physical, vol. 107,
issue 2, Oct. 2003.
[16]A. Punning, M. Kruusmaa, and A. Aabloo, “A self-sensing ion conducting polymer metal composite (IPMC) actuator,” Sensors and Actuators A: Physical, vol. 136, issue 2, May. 2007.
[17]R. Lumia and M. Shahinpoor, “IPMC microgripper research and development,” J. Phys.: Conf. Ser. , vol. 127, no. 1, 2008.
[18]D. Bandopadhya and J. Njuguna, “Estimation of bending resistance of Ionic Polymer Metal Composite (IPMC) actuator following variable parameters pseudo-rigid body model,” Materials Letters, vol. 63, issue 9-10, Apr. 2009.
[19]H. Khadivi, B. S. Aghazadeh, and C. Lucas, “Fuzzy Control of Ionic Polymer-Metal Composites,” Engineering in Medicine and Biology Society, p.p. 4198-4201, Aug. 2007.
[20]E. Smela, Conjugated Polymer Actuators for Biomedical Applications, John Wiley & Sons, 2003.
[21]S. Li, W. Kim, T. Cheng, and I. Oh, “A helical ionic polymer–metal composite actuator for radius control of biomedical active stents,” Smart Mater. Struct. , vol. 20, no. 3, Mar. 2011.
[22]F. Amirouche, Y. Zhou, and T. Johnson, “Current micropump technologies and their biomedical applications,” MICROSYSTEM TECHNOLOGIES, vol. 15, no. 5, p.p. 647-666, Feb. 2009.
[23]E. Maloneand H. Lipson, “Freeform fabrication of ionomeric polymer-metal composite actuators,” Rapid Prototyping Journal , vol. 12, no. 5, 1995.
[24]K. Krishen, “Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles,” Acta Astronautica , vol. 64, issue 11-12 p.p. 1160-1166, Jun. –Jul. 2009.
[25]DuPont™, http://www2.dupont.com/Our_Company/en_US/.
[26]C. Marxer, C. Thio, M. Gretillat, N. F. de Rooji, R. Battig, R. An-thamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Micro-electromech. Syst., vol. 6, no. 7, pp. 277–285, Jul. 1997.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top