跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊源
研究生(外文):Chun-Yuan Huang
論文名稱:高碳高矽鋼之麻田散鐵微結構分析
論文名稱(外文):Substructure of Martensite in High Carbon and High Silicon Steel
指導教授:楊哲人楊哲人引用關係
指導教授(外文):Jer-Ren Yang
口試委員:林新智侯春看王星豪黃慶淵
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:110
中文關鍵詞:穿透式電子顯微鏡相變雙晶麻田散鐵相變態X光繞射分析儀高碳鋼
外文關鍵詞:TEMtransformation twinmartensite phase transformationXRDhigh carbon steelcobalt
相關次數:
  • 被引用被引用:2
  • 點閱點閱:611
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鐵碳系統麻田散鐵根據外型通常可區分成三種型態,分別為板條狀、透鏡狀和板片狀麻田散鐵。不同合金成分的材料會產生不同的麻田散鐵相變起始溫度(Ms),而不同麻田散鐵起始溫度則會進一步決定將形成其中一種型態的麻田散鐵。此三種不同外觀之麻田散鐵在鐵碳系統中取決於碳含量的多寡進而影響Ms溫度。在相對較高溫度下,麻田散鐵透過差排的滑移完成晶格不變應變(LIS), 形成板條狀麻田散鐵;在相對較低溫下,麻田散鐵透過產生相變雙晶完成LIS,形成板片狀麻田散鐵;在中間溫度區間,麻田散鐵同時透過差別滑移及相變雙晶完成LIS,形成透鏡狀麻田散鐵。
此研究中,所用鋼材為參雜三種不同碳成分及鈷的高碳高矽合金鋼,藉由水淬至低於其Ms溫度的室溫產生麻田散鐵。經由觀察得知,此三種成分麻田散鐵形成的外型幾乎為透鏡狀和板片狀。藉由穿透式電子顯微鏡觀察透鏡狀麻田散鐵的外貌和微結構,並討論加入不同碳含量及鈷的影響,含碳量越高,麻田散鐵平板越窄而相變雙晶的寬度越細,而加入鈷會使麻田散鐵介面較平滑。除此之外,藉由控制不同沃斯田鐵化溫度產生不同先前沃斯田鐵晶粒大小也會影響麻田散鐵外貌,較大先前沃斯田鐵晶粒下之麻田散鐵寬長比較小。藉由光學顯微鏡觀察其形貌、長寬比。X光繞射分析儀則用來做麻田散鐵體積百分比之定量分析。綜合以上觀察結果加上透過穿透式電子顯微鏡進行更微觀的研究得到對於透鏡狀麻田散鐵奈米結構更多的資訊。此外,經由本研究對於不同先前沃斯沃斯田鐵晶粒大小和合金成分對麻田散鐵相變態的影響也將在之後詳細討論之。


Martensite in steels can usually be classified into three different morphologies including lath martensite, lenticular martensite and thin plate martensite. The morphological evolution relies on the martensite start (Ms) temperature related to the chemical composition of alloy. The transition among three types of martensite in Fe-C alloys can be determined by carbon compositions which affects the Ms temperature. Lath martensite, formed at the highest temperature, is associated with lattice invariant strain (LIS) occurring by dislocation slips. Thin plate martensite, formed at the lowest temperature, consists of transformation twins due to LIS. For lenticular martensite, usually formed at intermediate temperature, its fine structure brings about tons of attentions because it contains both transformation twin and dislocations.
In this study, the chemical compositions of high carbon and high silicon steels are containing three different contents of carbon and cobalt. Martensite from steels are obtained by quenching to room temperature which below its Ms temperature. By Observation, The major types of martensite in the three different alloys are lenticular and plate martensite. The fine nano/microstructure of lenticular martensite was investigated by transmission electron microscopy (TEM) to make clear the effects of carbon and cobalt on morphology of lenticular martensite. The twin width and aspect ratio decreases with the increasing of carbon content, and the interface becomes smooth by adding cobalt. Moreover, the effect of prior austenite grain size, which was controlled by austenization temperature in this study, on the formation of lenticular martensite will also be further elucidated. Optical microscope (OM) was used to observe the morphology and the aspect ratio of lenticular martensite; X-Ray diffraction spectra (XRD) was applied to measure the volume fraction of martensite. The above synergetic results coupled with TEM investigations will provide an extended knowledge in the nanostructure of lenticular martensite. Besides, the effects of austenite grain size and chemical compositions on the martensitic transformation and the corresponding nanostructure will be also further understood in this study.


摘要 III
Abstract IV
目錄 VI
圖表目錄 VIII
第1章 前言 1
第2章 文獻回顧 2
2-1 鐵碳系統麻田散鐵 2
2-2 麻田散鐵相變化 4
2-2-1 麻田散鐵之形成與特徵 5
2-2-2 麻田散鐵之現象結晶學 6
2-2-3 麻田散鐵之方位關係 10
2-2-4 麻田散鐵之型態學 11
2-2-4-1 板條狀麻田散鐵 11
2-2-4-2 板片狀麻田散鐵 12
2-2-4-3 透鏡狀麻田散鐵 13
2-3 殘留沃斯田鐵 26
2-4 合金元素和先前沃斯田鐵晶粒大小對Ms溫度之影響 27
第3章 實驗方法與儀器 31
3-1 實驗材料 31
3-2 實驗流程 32
3-3 光學顯微鏡 33
3-4 穿透式電子顯微鏡 33
3-5 掃描式電子顯微鏡 34
3-6 熱膨脹儀 34
3-7 X光繞射分析儀 34
第4章 高碳高矽合金鋼麻田散鐵之金相分析 36
4-1 1000oC沃斯田鐵化溫度金相分析 36
4-2 1200oC沃斯田鐵化溫度金相分析 46
第5章 麻田散鐵相比例定量分析 56
第6章 高碳高矽麻田散鐵顯微結構分析 60
6-1 高碳高矽麻田散鐵之形貌簡介 60
6-2 M0.8C麻田散鐵之微結構分析 62
6-3 M1C麻田散鐵之微結構分析 85
6-4 M1C2Co麻田散鐵之微結構分析 96
總結論 106
參考文獻 107



[1]R. W. K. Honeycombe, et al., "鋼:顯微組織與性質(Steels: Microstructure and Properties)," 五南出版, p. 5, 2004.
[2]R. W. K. Honeycombe, et al., "鋼:顯微組織與性質(Steels: Microstructure and Properties)," 五南出版, p. 4, 2004.
[3]C.S. Roberts, Trans. AIME, vol. 197, p. 203, 1953.
[4]R. Honeycombe and H. Bhadeshia, "STEELS: Microstructure and Properties 2nd edition," p. 38, 1995.
[5]G. Krauss, "STEELS: Heat Treatment and Processing Principles," p. 351, 1990.
[6]H. K. D. H. Bhadeshia, ""Worked Examples in the Geometry of Crystals"," The Institute of Metals, p. 56, 1987.
[7]D. A. Porter and K. E. Easterling, "Phase Transformations in Metals and Alloys," p. 386, 1992.
[8]D. A. Porter and K. E. Easterling, "Phase Transformations in Metals and Alloys," pp. 384-385, 1992.
[9]G. Krauss and A. R. Marder, "Morphology of Martensite in Iron Alloys," Metallurgical Transactions, vol. 2, pp. 2343-2357, 1971.
[10]A. R. Marder, et al., Met. Trans., vol. 1, pp. 1545-49, 1970.
[11]A. B. Greninger and A. R. Troiano, Trans. AIME, vol. 185, pp. 590-98, 1949.
[12]B.A.Bilby and J. W. Christian, J. Iron Steel Inst., vol. 197, pp. 122-31, 1961.
[13]J. F. Breedis and C. M. Wayman, Trans. AIME, vol. 224, p. 1128, 1962.
[14]H. K. D. H. Bhadeshia, "Worked Examples in the Geometry of Crystals," The Institute of Metals, p. 26, 1987.
[15]J. W. Christian, Acta Matellurgica, vol. 6, p. 377, 1958.
[16]J. W. Christian, Proc. Int. Conf. on Martensitic Transformations, Massachusetts, p. 220, 1979.
[17]E. C. Bain, Trans. AIME, vol. 70, p. 25, 1924.
[18]H. K. D. H. Bhadeshia, ""Worked Examples in the Geometry of Crystals"," The Institute of Metals, 1987.
[19]H. K. D. H. Bhadeshia, "Worked Examples in the Geometry of Crystals," The Institute of Metals, p. 9, 1987.
[20]H. K. D. H. Bhadeshia, "Worked Examples in the Geometry of Crystals," The Institute of Metals, p. 60, 1987.
[21]E. S. Machlin and M. Cohen, Trans. AIME, vol. 191, p. 1091, 1951.
[22]J. K. Mackenzie, Aust. J. Phys., vol. 10, p. 103, 1957.
[23]A. R. Mader and G. Krauss, Trans. ASM, vol. 62, p. 957, 1969.
[24]M.Watanabe and CM.Wayman, Met. Trans., vol. 2, p. 2221, 1971.
[25]DP.Dunne and JP.Bowles, acta Matellurgica, vol. 17, p. 201, 1969.
[26]EO.Fearone and M.Bevis, acta Matellurgica, vol. 22, p. 991, 1974.
[27]A. Shibata, et al., "Local orientation change inside lenticular martensite plate in Fe-33Ni alloy," Scripta Materialia, vol. 53, pp. 597-602, 2005.
[28]P. M. Inchkovich, Metall. I. Term. Obr., p. 171, 1954(1).
[29]T. Maki, "Recent Advance in Understanding Martensite in Steels," 1st International Symposium on Steel Science, 2007.
[30]G. R. Speich, Trans. TMS-AIME, vol. 245, pp. 2553-65, 1969.
[31]Y.-j. Liu, et al., "Apparent Morphologies and Nature of Packet Martensite in High Carbon Steels," Journal of Iron and Steel Research, International, vol. 13, pp. 40-46, 2006.
[32]J. W. Christian, "The Mechanism of Phase Transformations in Crystalline Solids," Inst. of Metals, Monograph, 33, 1969.
[33]A. Shibata, et al., "The Origin of Midrib in Lenticular Martensite," Materials Transactions, vol. 49, pp. 1242-1248, 2008.
[34]A. Shibata, et al., "Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys," Acta Materialia, vol. 57, pp. 483-492, 2009.
[35]R. Patterson and C. Wayman, acta Matellurgica, vol. 14, p. 347, 1966.
[36]T. Kakeshita, et al., Scripta Materialia, vol. 14, p. 1067, 1980.
[37]H. Neuhauser and W. Pitsch, acta Matellurgica, vol. 14, p. 347, 1971.
[38]Z. Nishiyama, et al., J. Jpn. Inst. Met., vol. 20, pp. 386-388, 1956.
[39]M. Umemoto, et al., Metallography, vol. 15, pp. 177-191, 1982.
[40]T. Kakeshita, et al., "Growth behavior of lenticular and thin plate martensites in ferrous alloys and steels," Scripta Metallurgica, vol. 14, pp. 1067-1070, 1980.
[41]R. L. Patterson and C. M. Wayman, "The crystallography and growth of partially-twinned martensite plates in Fe-Ni alloys," Acta Metallurgica, vol. 14, pp. 347-369, 1966.
[42]G. R. Speich, Met. Trans., vol. 3, p. 1045, 1972.
[43]D. P. Koistinen and R. E. Marburger, "A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels," Acta Metallurgica, vol. 7, pp. 59-60, 1959.
[44]C. Capdevila, et al., "Determination of Ms temperature in steels: A Bayesian neural network model," Isij International, vol. 42, pp. 894-902, 2002.
[45]K. W. Andrews, JISI, vol. 203, p. 721, 1965.
[46]Z. Nishiyama, et al., "Martensitic Transformation," Academic Press, New York, 1978.
[47]H. Kitahara, et al., Mat. Sci., vol. 9, pp. 287-295, 2006.
[48]A. García-Junceda, et al., "Dependence of martensite start temperature on fine austenite grain size," Scripta Materialia, vol. 58, pp. 134-137, 2008.
[49]K. Sridharan, et al., "Martensitic transformation and invar effect in Fe-Ni-Co alloys," Materials Chemistry and Physics, vol. 30, pp. 115-119, 1991.
[50]M. Grujicic, et al., "in Martensite Eds Olson G.B. and Owen W.S.," ASM international, pp. 175-196, 1992.
[51]Nishiyam.Z, et al., J Phys Soc Jpn, vol. 13, p. 1084, 1958.
[52]K. Shimizu, et al., "Transmission electron microscopy studies of {225}f martensite in an Fe-8%Cr-1%C alloy," Acta Metallurgica, vol. 19, pp. 1-6, 1971.
[53]S. Kajiwara, "Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys," Materials Science and Engineering A, vol. 273-275, pp. 67-88, 1999.
[54]K. Bhattacharya, "microstructure of martenstie," Oxford materials, p. 144, 2003.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊