跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/15 06:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃凱揚
研究生(外文):Kai-Yang Huang
論文名稱:東方果實蠅對納乃得之抗性機制探討
論文名稱(外文):Methomyl-Resistant Mechanisms of the Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae)
指導教授:許如君
指導教授(外文):Ju-Chun Hsu
口試委員:馮海東劉明毅戴淑美林鶯熹
口試日期:2011-01-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:昆蟲學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:102
中文關鍵詞:乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶
外文關鍵詞:Bactrocera dorsalismethomylsynergistsmetabolic enzymeacetylcholinesterasepoint mutation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:443
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
東方果實蠅 (Bactrocera dorsalis) 為相當嚴重的農業害蟲,納乃得 (methomyl)於1995年在台灣被推薦使用於防治東方果實蠅,但2002年在田間已發現東方果實蠅對納乃得產生數十倍抗藥性。在本論文研究當中,我們利用實驗室建立之東方果實蠅納乃得抗性品系 (具140倍抗性) 以及感性品系進行協力劑實驗、代謝酵素活性及乙醯膽鹼酯酶 (acetylcholinesterase, AChE) 活性及ace基因 (為轉譯AChE之基因) 序列等實驗以探討可能的抗性機制。另加入曾深入研究乙醯膽鹼酯酶之撲滅松 (fenitrothion) 抗性品系 (具538倍抗性) 以做對照比較。以協力劑探討納乃得的代謝機制,結果顯示協力劑PBO (piperonyl butoxide) 及TPP (triphenyl phosphate) 的協力效果顯著 (PBO, 4.04倍;TPP, 4.82倍),另協力劑DEM (diethyl maleate) 對納乃得抗性品系之協力效果比感性品系高約1.7倍;在代謝酵素活性實驗當中,也同樣發現納乃得抗性品系在代謝酵素酯酶 (受質:α-及β-naphthyl acetate) (1.5倍)、麩胺基硫轉移酶 (受質:CDNB及DCNB) (1.5至2倍) 及多功能氧化酶 (受質:7-ethoxycoumarin) (4倍) 等活性上均較感性品系來的高。推測多功能氧化酶 (mixed function oxidases)、酯酶 (esterases) 及麩胺基硫轉移酶 (glutathione S-transferases) 可能和東方果實蠅之納乃得抗性的產生有所關聯。在乙醯膽鹼酯酶的活性、乙醯膽鹼酯酶不敏感性實驗 (抑制劑: 納乃得及氧基巴拉松 (paraoxon)) 以及ace基因的表現實驗當中,並沒有找到感性品系和納乃得抗性品系之間的差異。另在乙醯膽鹼酯酶抑制活性實驗當中,僅有撲滅松抗性品系對氧基巴拉松的抑制較不敏感。雖然在納乃得抗性品系ace基因定序實驗中,發現乙醯膽鹼酯酶後轉譯修飾區域上有一點突變 (T659A) 位置,但此點突變也同樣發生在感性品系當中,感性品系之點突變基因頻度較納乃得抗性品系低 (感性品系:TT = 0.27;TA = 0.55;AA = 0.18。納乃得抗性品系:TA = 0.16;AA = 0.84)。T659A點突變會稍微增加後轉譯修飾前之乙醯膽鹼酯酶序列疏水性C端的疏水性;不過並沒有從納乃得抗、感性品系間或是不同的T659A基因型間,找到對於乙醯膽鹼酯酶的活性以及乙醯膽鹼酯酶受納乃得抑制能力之間的關聯性。目前研究發現東方果實蠅對於納乃得的抗性機制可能主要是在代謝機制上;而且東方果實蠅對於納乃得之標的抗性機制,和果實蠅屬 (Bactrocera spp.) 中曾深入研究探討之有機磷類標的抗性機制不同。

Oriental fruit flies (Bactrocera dorsalis) are notorious agricultural pests, methomyl has been used to manage B. dorsalis in Taiwan since 1995. Unfortunately, several times of methomyl resistance has been observed in B. dorsalis from field investigation in 2002. In this study, the synergism bioassay, metabolic enzyme activity, acetylcholinesterase (AChE) activity and the ace gene (which can encode AChE protein) molecular assays were used to explore the possible methomyl resistant mechanisms in the methomyl-resistant strain (Meth-R, 140-fold resistance ratio) of B. dorsalis. A well-documented fenitrothion-resistant strain (Fenit-R, 538-fold resistance ratio) was used to compare with the Meth-R and susceptible strains on AChE assays. Synergism tests indicated synergistic ratios toward methomyl at 4.04-fold with piperonyl butoxide (PBO) and 4.82-fold with triphenyl phosphate (TPP) on Meth-R, and there was a 1.7-fold diethyl maleate (DEM) synergistic ratio on Meth-R as compared to the results of the susceptible strain. Enzyme activity results supported the theory that Meth-R had greater activity, close to 1.5-fold in ESTs (by α- or β-naphthyl acetate as the substrates), 1.5- to 2-fold in GSTs (by CDNB or DCNB as the substrates), and 4-fold in MFOs (by 7-ethoxycoumarin as the substrates) over the susceptible strain, which suggests that mixed function oxidases (MFOs), esterases (ESTs), and glutathione S-transferases (GSTs) are involved in methomyl resistance. No significant difference was found on the AChE activity, AChE inhibition (by using methomyl and paraoxon as inhibitors), and quantitative PCR (qPCR) of ace gene between the Meth-R and susceptible strains. The AChE of the Fenit-R strain was found to be insensitive to the paraoxon inhibitor. Although a point mutation (T659A) located at the post-translational modification region was discovered on the ace gene of the Meth-R; T659A also occurred in the susceptible strain, but with lower gene frequency (susceptible strain: homozygous genotype of T = 0.27, heterozygous = 0.55, homozygous genotype of A = 0.18; Meth-R strain: TA = 0.16; AA = 0.84). T659A might slightly influence the hydrophobicity of AChE precursor protein due to an increase of the hydrophobic results on the C-terminal region. However, there was no correlation between the Meth-R and susceptible strains or among different genotypes of T659A on the results of AChE activity or AChE inhibition assays. As a result, our study indicates that the possible methomyl resistance is the metabolic mechanism in B. dorsalis. The mechanism in methomyl resistance is different from the well-known altered target-site mechanism in organophosphate resistance in Bactrocera spp.

Acknowledgements…………………………..…………………………………………..i
Chinese abstract…………………………………………………………………………iii
Abstract………………………………………………………………………………….v
List of tables…………………………………………………………………..…………x
List of illustrations……………………………………………………………………...xii

Introduction…………………………………………………………………………..….1
Methomyl – carbamate insecticide………………………………………………3
Mode of actions of organophosphate and carbamate insecticides………….……5
The structures and functions of AChE……………………….……………..……6
Three major possible resistant mechanisms in insects………………………..…8
The organophosphate resistance in tephritid flies………………………...……14
Resistant mechanisms of carbamate insecticide……………………………..…17
Materials and Methods………………………………………………………………....20
Chemicals……………………………………………………………………....20
Fly colonies establishment………………………………………………..…….21
Insecticide bioassay……………………………………………………...….….22
Synergism bioassay……………………………………………………...……..23
Metabolic enzyme assays…………………………………………………..…..23
Esterases (ESTs) ……………………………………………………….23
ESTs crude extraction………………………………………......23
Standard curve of α- and β-naphthol………………...…………24
ESTs activity assay…………………………………………..…25
ESTs kinetics assay………………………………………..……26
Mixed function oxidases (MFOs) ………………………………..….…26
MFOs crude extraction…………………………………………26
Standard curve of 7-hydroxycoumarin…………………....……27
MFOs activity assay……………………………………………28
Glutathione S-transferases (GSTs) …………………………….………29
GSTs crude extraction………………………………………..…29
GSTs activity assay………………………………………..……29
AChE enzyme assays………………………………………………………...…31
AChE crude extraction…………………………………………………31
AChE activity assay…………………………………………………….31
AChE kinetics assay……………………………………………...…….32
AChE inhibition assay………………………………………………….33
AChE gene (ace gene) sequencing……………………………………………..33
Diagnostic I214V and G488S in methomyl-resistant strain by restriction
fragment length polymorphism (RFLP) assay……………...………..…33
I214V point mutation detection………………………………...34
G488S point mutation detection………………………………..35
Whole ace gene sequencing from methomyl-resistant strain………..…35
Ace gene multiple sequence alignments……………………………..…37
Quantitative real-time PCR (qPCR) of ace gene…………………………….…37
The correlation between T659A point mutation and AChE activity………...…38
Protein level – methomyl inhibited AChE activity assay………………39
DNA level – point mutation assay by RFLP method……………..……39
RNA level – point mutation assay by RFLP method………………...…40
Hydrophobicity plots and GPI modification site of AChE protein…………….40
Statistical analysis……………………………………………………………....41
Results………………………………………………….………………………………42
Resistant strains and synergism bioassay………………………………………42
Biochemical study of metabolic enzymes ……………………………………..42
Biochemical study of AChE……………………………………………………45
Molecular study of AChE……………………………………………………....47
AChE amino acid sequence analysis results……………………………………49
Discussion………………………………………………………………………...…….51
Table……………………………………………………………………………………61
Figure…………………………………………………………………………………...74
References…………………………………………………………………………..….87

Ahmed, S., and R. M. Wilkins. 2002. Studies on some enzymes involved in insecticide resistance in fenitrothion-resistant and -susceptible strains of Musca domestica L. (Dipt, Muscidae). J. Appl. Entomol. 126: 510-516.
Amichot, M., S. Tares, A. Brun-Barale, L. Arthaud, J. M. Bride, and J. B. Berge. 2004. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur. J. Biochem. 271: 1250-1257.
Armstrong, R. N. 1997. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem. Res. Toxicol. 10: 2-18.
Arpagaus, M., and J. P. Toutant. 1985. Polymorphism of acetylcholinesterase in adult Pieris brassicae heads. Evidence for detergent-insensitive and Triton X-100-interacting forms. Neurochem. Int. 7: 793-804.
Baek, J. H., J. I. Kim, D. W. Lee, B. K. Chung, T. Miyata, and S. H. Lee. 2005. Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella. Pest. Biochem. Physiol. 81: 164-175.
Baxter, G. D., and S. C. Barker. 1998. Acetylcholinesterase cDNA of the cattle tick, Boophilus microplus: characterisation and role in organophosphate resistance. Insect Biochem. Mol. Biol. 28: 581-589.
Beranek, A. P. 1974. Esterase variation and organophosphate resistance in populations of Aphis fabae and Myzus persicae. Entomol. Exp. Appl. 17: 129-142.
Bernhard, S. A. 1955. A simple model of molecular specificity in enzyme-substrate systems .1. theory and applications to the system acetylcholinesterase-substrate. J. Am. Chem. Soc. 77: 1966-1972.
Berrada, S., D. Fournier, A. Cuany, and T. X. Nguyen. 1994. Identification of resistance mechanisms in a selected laboratory strain of Cacopsylla pyri (Homoptera, Psyllidae): altered acetylcholinesterase and detoxifying oxidases. Pest. Biochem. Physiol. 48: 41-47.
Bourguet, D., M. Raymond, D. Fournier, C. A. Malcolm, J. P. Toutant, and M. Arpagaus. 1996. Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera: Culicidae). J. Neurochem. 67: 2115-2123.
Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brattsten, L. B., and C. F. Wilkinson 1973. Induction of microsomal-enzymes in southern armyworm (Prodenia eridania). Pest. Biochem. Physiol. 3: 393-407.
Brattsten, L. B., C. W. Holyoke, J. R. Leeper, and K. F. Raffa. 1986. Insecticide resistance: challenge to pest-management and basic research. Science 231: 1255-1260.
Bucht, G., L. Lindgren, and K. Hjalmarsson. 1995. Residues in the C-terminus of Torpedo californica acetylcholinesterase important for modification into a glycophospholipid anchored form. pp. 89-96. In: D. M. Quinn, A. S. Balasubramanian, B. P. Doctor, and P. Taylor, eds. Enzymes of the cholinesterase family. Plenum Press, New York.
Bues, R., J. C. Bouvier, and L. Boudinhon. 2005. Insecticide resistance and mechanisms of resistance to selected strains of Helicoverpa armigera (Lepidoptera: Noctuidae) in the south of France. Crop Prot. 24: 814-820.
Busvine, J. R. 1980. Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides: method for tephritid fruit flies- FAO Method No. 20. FAO Plant Protection Bull. 27: 40-43.
Byrne, F. J., and N. C. Toscano. 2001. An insensitive acetylcholinesterase confers resistance to methomyl in the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 94: 524-528.
Carino, F. A., J. F. Koener, F. W. Plapp, and R. Feyereisen. 1994. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem. Mol. Biol. 24: 411-418.
Casida, J. E. 1963. Mode of action of carbamates. Annu. Rev. Entomol. 8: 39-58.
Chaabihi, H., D. Fournier, Y. Fedon, J. P. Bossy, M. Ravallec, G. Devauchelle, and M. Cerutti. 1994. Biochemical-characterization of Drosophila melanogaster acetylcholinesterase expressed by recombinant baculoviruses. Biochem. Biophys. Res. Commun. 203: 734-742.
Charpentier, A., and D. Fournier. 2001. Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pestic. Biochem. Physiol. 70: 100-107.
Chen, H. J., Z. Liao, X. M. Hui, G. Q. Li, F. Li, and Z. J. Han. 2009. Ace2, rather than ace1, is the major acetylcholinesterase in the silkworm, Bombyx mori. Insect Sci. 16: 297-303.
Cheng, Y., and W. H. Prusoff. 1973. Relationship between inhibition constant (ki) and concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic-reaction. Biochem. Pharmacol. 22: 3099-3108.
Chiu, H. T. 1978. Studies on the improvement of mass rearing for oriental fruit flies. Plant Prot. Bull. 20: 87-92.
Chiu, H. T. 1989. Analysis of spatial distribution of Dacus dorsalis Hendel for evaluating the eradication program in lambay island of Taiwan. Plant Prot. Bull. 31: 326-331.
Chuang, Y. Y., and R. F. Hou. 2005. Field tests and evaluation of effectiveness using the longer efficiency trap for the oriental fruit fly, Bactrocera dorsalis. Research Bulletin, KDARES. 16: 50-59. (in Chinese)
Cilek, J. E., and F. W. Knapp. 1993. Enhanced diazinon susceptibility in pyrethroid-resistant horn flies (Diptera, Muscidae): potential for insecticide resistance management. J. Econ. Entomol. 86: 1303-1307.
Clark, A. G., and N. A. Shamaan. 1984. Evidence that DDT-dehydrochlorinase from the housefly is a glutathione S-transferase. Pest. Biochem. Physiol. 22: 249-261.
Clark, A. G., N. A. Shamaan, M. D. Sinclair, and W. C. Dauterman. 1986. Insecticide metabolism by multiple glutathione S-transferases in 2 strains of the housefly, Musca domestica (L). Pest. Biochem. Physiol. 25: 169-175.
Copeland, R. A. 2000. Reversible inhibitors. pp. 266-303. In: R. A. Copeland, ed. Enzyme: a practical introduction to structure, mechanism, and data analysis. Wiley-VCH, Inc. Press, Canada.
Corbett, J. R. 1974. Insecticides inhibiting acetylcholinesterase. pp. 107-164. In: J. R. Corbett, ed. The biochemical mode of action of pesticides. Academic Press, London & New York.
Davis, A. C., and R. J. Kuhr. 1974. Laboratory and field evaluation of methomyl''s toxicity to the cabbage looper. J. Econ. Entomol. 67: 681-682.
de Sousa, G., A. Cuany, A. Brun, M. Amichot, R. Rahmani, and J. B. Berge. 1995. A Microfluorometric method for measuring ethoxycoumarin-O-deethylase activity on individual Drosophila melanogaster abdomens: interest for screening resistance in insect populations. Anal. Biochem. 229: 86-91.
Devonshire, A. L. 1977. Properties of a carboxylesterase from peach-potato aphid, Myzus persicae (Sulz.), and its role in conferring insecticide resistance. Biochem. J. 167: 675-683.
Devonshire, A. L., and R. M. Sawicki. 1979. Insecticide-resistant Myzus persicae as an example of evolution by gene duplication. Nature 280: 140-141.
Devonshire, A. L., and G. D. Moores. 1982. A carboxylesterase with broad substrate-specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pest. Biochem. Physiol. 18: 235-246.
Devonshire, A. L., and L. M. Field. 1991. Gene amplification and insecticide resistance. Annu. Rev. Entomol. 36: 1-23.
Devonshire, A. L., L. M. Searle, and G. D. Moores. 1986. Quantitative and qualitative variation in the messenger-RNA for carboxylesterases in insecticide-susceptible and resistant Myzus persicae (Sulz.). Insect Biochem. 16: 659-665.
Devonshire, A. L., L. M. Field, S. P. Foster, G. D. Moores, M. S. Williamson, and R. L. Blackman. 1998. The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 353: 1677-1684.
Dyte, C. E., and D. G. Rowlands. 1968. Metabolism and synergism of malathion in resistant and susceptible strains of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 4: 157-173.
Eisenhaber, B., P. Bork, and F. Eisenhaber. 1999. Prediction of potential GPI-modification sites in proprotein sequences. J. Mol. Biol. 292: 741-758.
Ellman, G. L., K. D. Courtney, V. Andres, and R. M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95.
Elyamani, H., C. Tranminh, M. A. Abdul, and D. Chavanne. 1988. Automated system for pesticide detection. Sens. Actuators 15: 193-198.
Feng, Q. L., K. G. Davey, A. S. D. Pang, M. Primavera, T. R. Ladd, S. C. Zheng, S. S. Sohi, A. Retnakaran, and S. R. Palli. 1999. Glutathione S-transferase from the spruce budworm, Choristoneura fumiferana: identification, characterization, localization, cDNA cloning, and expression. Insect Biochem. Mol. Biol. 29: 779-793.
Fernley, H. N., and P. G. Walker. 1965. Kinetic behaviour of calf-intestinal alkaline phosphatase with 4-methylumbelliferyl phosphate. Biochem. J. 97: 95-103.
Finney, D. J. 1971. Maximum likelihood estimation: heterogeneity. pp. 70-76. In: D. J. Finney, ed. Probit analysis. Cambridge University Press, New York.
Field, L. M., and A. L. Devonshire. 1998. Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochem. J. 330: 169-173.
Field, L. M., A. L. Devonshire, and B. G. Forde. 1988. Molecular evidence that insecticide resistance in peach potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J. 251: 309-312.
Field, L. M., A. L. Devonshire, R. H. Ffrenchconstant, and B. G. Forde. 1989. Changes in DNA methylation are associated with loss of insecticide resistance in the peach-potato aphid Myzus persicae (Sulz.). Febs Letters 243: 323-327.
Field, L. M., M. S. Williamson, G. D. Moores, and A. L. Devonshire. 1993. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochem. J. 294: 569-574.
Fine, B. C., P. J. Godin, and E. M. Thain. 1963. Penetration of pyrethrin I labelled with carbon-14 into susceptible and pyrethroid resistant houseflies. Nature 199: 927-928.
Fonseca-Gonzalez, I., R. Cardenas, M. L. Quinones, J. McAllister, and W. G. Brogdon. 2009. Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldón populations from malaria endemic areas in Colombia. J. Parasitol. Res. 105: 1399-1409.
Fournier, D., J. M. Bride, F. Karch, and J. B. Berge. 1988. Acetylcholinesterase from Drosophila melanogaster. Identification of 2 subunits encoded by the same gene. FEBS Lett. 238: 333-337.
Fournier, D., F. Karch, J. M. Bride, L. M. C. Hall, J. B. Berge, and P. Spierer. 1989. Drosophila melanogaster acetylcholinesterase gene. Structure, evolution and mutations. J. Mol. Biol. 210: 15-22.
Fragoso, D. B., R. N. C. Guedes, M. C. Picanco, and L. Zambolim. 2002. Insecticide use and organophosphate resistance in the coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). Bull. Entomol. Res. 92: 203-212.
Fukami, J. I., and T. Shishido. 1966. Nature of a soluble glutathione-dependent enzyme system active in cleavage of methyl parathion to desmethyl parathion. J. Econ. Entomol. 59: 1338-1346.
Fukuto, T. R. 1990. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 87: 245-254.
Furukawa, Y., K. Tsukamoto, and H. Ikezawa. 1997. Mutational analysis of the C-terminal signal peptide of bovine liver 5''-nucleotidase for GPI anchoring: a study on the significance of the hydrophilic spacer region. Biochim. Biophys. Acta 1328: 185-196.
Garg, D. P., A. K. Bansal, A. Malhotra, R. Kiran, and D. K. Dhawan. 2009. Methomyl induced hematological and biochemical alterations - protection by vitamin E. Pestic. Biochem. Physiol. 93: 127-132.
Genever, P. G., M. A. Birch, E. Brown, and T. M. Skerry. 1999. Osteoblast-derived acetylcholinesterase: a novel mediator of cell-matrix interactions in bone? Bone 24: 297-303.
Grafton-Cardwell, E. E., Y. Ouyang, R. A. Striggow, J. A. Christiansen, and C. S. Black. 2004. Role of esterase enzymes in monitoring for resistance of California red scale (Homoptera: Diaspididae), to organophosphate and carbamate insecticides. J. Econ. Entomol. 97: 606-613.
Grant, D. F. 1991. Evolution of glutathione-S-transferase subunits in Culicidae and related Nematocera: electrophoretic and immunological evidence for conserved enzyme structure and expression. Insect Biochem. 21: 435-445.
Grauso, M., E. Culetto, D. Combes, Y. Fedon, J. P. Toutant, and M. Arpagaus. 1998. Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. FEBS Lett. 424: 279-284.
Guedes, R. N. C., K. Y. Zhu, S. Kambhampati, and B. A. Dover. 1997. An altered acetylcholinesterase conferring negative cross-insensitivity to different insecticidal inhibitors in organophosphate-resistant lesser grain borer, Rhyzopertha dominica. Pestic. Biochem. Physiol. 58: 55-62.
Gunning, R. V., G. D. Moores, and A. L. Devonshire. 1996. Insensitive acetylcholinesterase and resistance to thiodicarb in Australian Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 55: 21-28.
Gunning, R. V., G. D. Moores, and A. L. Devonshire. 1998. Inhibition of resistance-related esterases by piperonyl butoxide in Helicoverpa armigera (Lepidoptera: Noctuidae) and Aphis gossypii (Hemiptera: Aphididae). pp. 215-226. In: D. G. Jones, ed. Piperonyl butoxide. The insecticide synergist. Academic Press, London, UK.
Habig, W. H., M. J. Pabst, and W. B. Jakoby. 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130-7139.
Harvey, J. Jr. 1972. Decomposition of 14C-methomyl in aerated river water exposed to sunlight (Unpublished report No. ML/ME-18).
Harvey, J. Jr. 1983. Photolysis of [1-14C] methomyl. Wilmington, Delaware, E.I. Du Pont de Nemours and Co., Agricultural Products Department (Unpublished report No. AMR-121-83).
Hatano, R., and J. G. Scott. 1993. Anti-P450lpr antiserum inhibits the activation of chlorpyrifos to chlorpyrifos oxon in house fly microsomes. Pest. Biochem. Physiol. 45: 228-233.
Hawkes, N. J., R. W. Janes, J. Hemingway, and J. Vontas. 2005. Detection of resistance-associated point mutations of organophosphate-insensitive acetylcholinesterase in the olive fruit fly, Bactrocera oleae (Gmelin). Pestic. Biochem. Physiol. 81: 154-163.
Hemingway, J., N. J. Hawkes, L. McCarroll, and H. Ranson. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34: 653-665.
Hernandez, R., H. Q. He, A. C. Chen, G. W. Ivie, J. E. George, and G. G. Wagner. 1999. Cloning and sequencing of a putative acetylcholinesterase cDNA from Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 36: 764-770.
Hernandez, R., H. Q. He, A. C. Chen, S. D. Waghela, G. W. Ivie, J. E. George, and G. G. Wagner. 2000. Identification of a point mutation in an esterase gene in different populations of the southern cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol. 30: 969-977.
Hick, C. A., L. M. Field, and A. L. Devonshire. 1996. Changes in the methylation of amplified esterase DNA during loss and reselection of insecticide resistance in peach-potato aphids, Myzus persicae. Insect Biochem. Mol. Biol. 26: 41-47.
Hidaka, T., H. Furuno, T. Inokuchi, and R. Ogura. 1990. Effects of diethyl maleate (DEM), a glutathione depletor, on prostaglandin synthesis in the isolated perfused spleen of rabbits. Arch. Toxicol. 64: 103-108.
Ho, S. H., and K. I. Sudderuddin. 1976. An in vitro study of nonspecific esterases of melon fly, Dacus cucurbitae Coq. and their reactions with organophosphate and carbamate compounds. Comp. Biochem. Physiol. C, Pharmacol. Toxicol. 54: 95-97.
Hsu, J. C., and H. T. Feng. 2000. Insecticide susceptibility of the oriental fruit fly (Bactrocera dorsalis (Hendel)) (Diptera: Tephritidae) in Taiwan. Chinese J. Entomol. 20: 109-118.
Hsu, J. C., and H. T. Feng. 2002. Susceptibility of melon fly (Bactrocera cucurbitae) and oriental fruit fly (B. dorsalis) to insecticides in Taiwan. Plant Prot. Bull. 44: 303-314. (in Chinese)
Hsu, J. C., H. T. Feng, and W. J. Wu. 2004a. Resistance and synergistic effects of insecticides in Bactrocera dorsalis (Diptera: Tephritidae) in Taiwan. J. Econ. Entomol. 97: 1682-1688.
Hsu, J. C., W. J. Wu, and H. T. Feng. 2004b. Biochemical mechanisms of malathion resistance in oriental fruit fly (Bactrocera dorsalis). Plant Prot. Bull. 46: 255-266.
Hsu, J. C., D. S. Haymer, W. J. Wu, and H. T. Feng. 2006. Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem. Mol. Biol. 36: 396-402.
Hsu, J. C., W. J. Wu, D. S. Haymer, H. Y. Liao, and H. T. Feng. 2008. Alterations of the acetylcholinesterase enzyme in the oriental fruit fly Bactrocera dorsalis are correlated with resistance to the organophosphate insecticide fenitrothion. Insect Biochem. Mol. Biol. 38: 146-154.
Howell, J. F., M. Cheikh, E. J. Harris, H. Bensalah, S. Allaya, and P. Crnjanski. 1975. Mediterranean fruit fly: control in Tunisia by strip treatment with a bait spray of technical malathion and protein-hydrolyzate. J. Econ. Entomol. 68: 247-249.
[IPCS] Environmental Health Criteria 64. Carbamate Pesticides: A General Introduction. 1986. World Health Organization, Geneva.
Javed, N., R. Viner, M. S. Williamson, L. M. Field, A. L. Devonshire, and G. D. Moores. 2003. Characterization of acetylcholinesterases, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood). Insect Mol. Biol. 12: 613-620.
Johnson, C. D., and R. L. Russell. 1983. Multiple molecular forms of acetylcholinesterase in the nematode Caenorhabditis elegans. J. Neurochem. 41: 30-46.
Kakani, E. G., and K. D. Mathiopoulos. 2008. Organophosphosphate resistance-related mutations in the acetylcholinesterase gene of Tephritidae. J. Appl. Entomol. 132: 762-771.
Kakani, E. G., I. M. Ioannides, J. T. Margaritopoulos, N. A. Seraphides, P. J. Skouras, J. A. Tsitsipis, and K. D. Mathiopoulos. 2008. A small deletion in the olive fly acetylcholinesterase gene associated with high levels of organophosphate resistance. Insect Biochem. Mol. Biol. 38: 781-787.
Kanga, L. H. B., D. J. Pree, J. L. van Lier, and K. J. Whitty. 1997. Mechanisms of resistance to organophosphorus and carbamate insecticides in oriental fruit moth populations (Grapholita molesta Busck). Pestic. Biochem. Physiol. 59: 11-23.
Kao, C. H., and C. N. Sun. 1991. In vitro degradation of some organophosphorus insecticides by susceptible and resistant diamondback moth. Pest. Biochem. Physiol. 41: 132-141.
Karunker, I., J. Benting, B. Lueke, T. Ponge, R. Nauen, E. Roditakis, J. Vontas, K. Gorman, I. Denholm, and S. Morin. 2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Mol. Biol. 38: 634-644.
Kennedy, S. W. 1991. The mechanism of organophosphate inhibition of cholinesterase- proposal for a new approach to measuring inhibition. pp. 74-88. In: P. Mineau, ed. Cholinesterase-inhibiting Insecticides. Elsevier, Amsterdam.
Knowles, C. O., and J. E. Casida. 1966. Mode of action of organophosphate anthelmintics. Cholinesterase inhibition in Ascaris lumbricoides. J. Agric. Food Chem. 14: 566-572.
Konno, T., E. Hodgson, and W. C. Dauterman. 1989. Studies on methyl parathion resistance in Heliothis virescens. Pest. Biochem. Physiol. 33: 189-199.
Korytko, P. J., F. W. Quimby, and J. G. Scott. 2000. Metabolism of phenanthrene by house fly CYP6D1 and dog liver cytochrome P450. J. Biochem. Mol. Toxicol. 14: 20-25.
Kuhr, R. J. 1973. The metabolic fate of methomyl in cabbage looper. Pestic. Biochem. Physiol. 3: 113-119.
Kyte, J., and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132.
Lee, D. W., S. S. Kim, S. W. Shin, W. T. Kim, and K. S. Boo. 2006. Molecular characterization of two acetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guenee). Biochim. Biophys. Acta-Gen. Subj. 1760: 125-133.
Lenoirrousseaux, J. J. 1985. Arthropods possess a unic major molecular-form of acetylcholinesterase. C. R. Seances Soc. Biol. Fil. 179: 741-747.
LeOra Software. 1987. Polo-PC: a user’s guide to probit or logit analysis. LeOra Software, Berkeley, CA.
Levitin, E., and E. Cohen. 1998. The involvement of acetylcholinesterase in resistance of the California red scale Aonidiella aurantii to organophosphorus pesticides. Entomol. Exp. Appl. 88: 115-121.
Lewis, J. B. 1969. Detoxification of diazinon by subcellular fractions of diazinon-resistant and susceptible houseflies. Nature 224: 917-918.
Lewis, J. B., and R. M. Sawicki. 1971. Characterization of the resistance mechanisms to diazinon, parathion and diazoxon in the organophosphorus-resistant SKA strain of house flies (Musca domestica L.). Pest. Biochem. Physiol. 1: 275-285.
Li, F., and Z. J. Han. 2002. Two different genes encoding acetylcholinesterase existing in cotton aphid (Aphis gossypii). Genome 45: 1134-1141.
Liang, G. H., J. H. Chen, and J. Q. Yang. 2003. Advance in Research of Bactrocera dorsalis (Hendel) in China. Entomological Journal of East China 12: 90-98. (in Chinese)
Liu, N., and J. G. Scott. 1995. Genetics of resistance to pyrethroid insecticides in the house fly, Musca domestica. Pest. Biochem. Physiol. 52: 116-124.
Liu, T. D., C. J. Huang, and H. S. Lin. 1996. Evaluation of guava fruits on the control of oriental fruit fly (Bactrocera dorsalis (Hendel)). Bull. Taichung Dist. Agri. Improv. Sta. 50: 61-71. (in Chinese)
Loomis, T. A., and B. Salafsky. 1963. Antidotal action of pyridinium oximes in anticholinesterase poisoning; comparative effects of soman, sarin, and neostigmine on neuromuscular function. Toxicol. Appl. Pharmacol. 5: 685-701.
Lwebugamukasa, J. S., S. Lappi, and P. Taylor. 1976. Molecular-forms of acetylcholinesterase from Torpedo californica: their relationship to synaptic-membranes. Biochemistry 15: 1425-1434.
Magana, C., P. Hernandez-Crespo, F. Ortego, and P. Castanera. 2007. Resistance to malathion in field populations of Ceratitis capitata. J. Econ. Entomol. 100: 1836-1843.
Magana, C., P. Hernandez-Crespo, A. Brun-Barale, F. Couso-Ferrer, J. M. Bride, P. Castanera, R. Feyereisen, and F. Ortego. 2008. Mechanisms of resistance to malathion in the medfly Ceratitis capitata. Insect Biochem. Mol. Biol. 38: 756-762.
Malcolm, C. A., D. Bourguet, A. Ascolillo, S. J. Rooker, C. F. Garvey, L. M. C. Hall, N. Pasteur, and M. Raymond. 1998. A sex-linked ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens. Insect Mol. Biol. 7: 107-120.
Massoulie, J., L. Pezzementi, S. Bon, E. Krejci, and F. M. Vallette. 1993. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 41: 31-91.
Massoulie, J., A. Anselmet, S. Bon, E. Krejci, C. Legay, N. Morel, and S. Simon. 1999. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chem. Biol. Interact. 119-120: 29-42.
Matsumura, F. 1985. Anticholinesterases: organophosphorus and carbamate insecticides. pp. 161-177. In: F. Matsumura, ed. Toxicology of Insecticides. Plenum Press, New York.
Matthews, H. B., and J. E. Casida. 1970. Properties of housefly microsomal cytochromes in relation to sex, strain, substrate specificity, and apparent inhibition and induction by synergist and insecticide chemicals. Life Sci. 9: 989-1001.
McCord, E., and S. J. Yu. 1987. The mechanisms of carbaryl resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pestic. Biochem. Physiol. 27: 114-122.
Menozzi, P., M. A. Shi, A. Lougarre, Z. H. Tang, and D. Fournier. 2004. Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evol. Biol. 4: 1-7.
Metcalf, R. L. 1955. Physiological basis for insect resistance to insecticides. Physiol. Rev. 35: 197-232.
Metcalf, R. L., T. R. Fukuto, C. Wilkinson, M. H. Fahmy, S. A. Elaziz, and E. R. Metcalf. 1966. Mode of action of carbamate synergists. J. Agric. Food Chem. 14: 555-562.
Millard, C. B., and C. A. Broomfield. 1995. Anticholinesterases: medical applications of neurochemical principles. J. Neurochem. 64: 1909-1918.
Mirer, F. E., B. S. Levine, and S. D. Murphy. 1975. Effects of piperonyl butoxide and diethyl maleate on toxicity and metabolism of parathion and methyl parathion. Toxicol. Appl. Pharmacol. 33: 181-181.
Moores, G. D., X. W. Gao, I. Denholm, and A. L. Devonshire. 1996. Characterisation of insensitive acetylcholinesterase in insecticide-resistant cotton aphids, Aphis gossypii Glover (Homoptera: Aphididae). Pestic. Biochem. Physiol. 56: 102-110.
Mouches, C., N. Pasteur, J. B. Berge, O. Hyrien, M. Raymond, B. R. Desaintvincent, M. Desilvestri, and G. P. Georghiou. 1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233: 778-780.
Munoz, F. J., R. Aldunate, and N. C. Inestrosa. 1999. Peripheral binding site is involved in the neurotrophic activity of acetylcholinesterase. Neuroreport 10: 3621-3625.
Mutero, A., and D. Fournier. 1992. Posttranslational modifications of Drosophila acetylcholinesterase. In vitro mutagenesis and expression in Xenopus oocytes. J. Biol. Chem. 267: 1695-1700.
Mutero, A., M. Pralavorio, J. M. Bride, and D. Fournier. 1994. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. U.S.A. 91: 5922-5926.
Myers, D. K., and B. Mendel. 1949. Investigations on the use of eserine for the differentiation of mammalian esterases. Proc. Soc. Exp. Biol. Med. 71: 357-360.
Oakeshott, J. G., A. L. Devonshire, C. Claudianos, T. D. Sutherland, I. Horne, P. M. Campbell, D. L. Ollis, and R. J. Russell. 2005. Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin- and carboxyl-esterases. Chem. Biol. Interact. 157: 269-275.
Ono, M., J. J. Swanson, L. M. Field, A. L. Devonshire, and B. D. Siegfried. 1999. Amplification and methylation of an esterase gene associated with insecticide-resistance in greenbugs, Schizaphis graminum (Rondani) (Homoptera : Aphididae). Insect Biochem. Mol. Biol. 29: 1065-1073.
Oppenoor, F. J. 1965. Biochemical genetics of insecticide resistance. Annu. Rev. Entomol. 10: 185-206.
Ottea, J. A., and F. W. Plapp. 1984. Glutathione S-transferase in the housefly: biochemical and genetic changes associated with induction and insecticide resistance. Pestic. Biochem. Physiol. 22: 203-208.
Patil, J. A., A. J. Patil, A. V. Sontakke, and S. P. Govindwar. 2008. Effect of methomyl on hepatic mixed function oxidases in rats. Indian J. Pharmacol. 40: 158-163.
[PDAF] Provincial Department of Agriculture and Forestry. 1972. Plant protection manual. Department of Agriculture and Forestry, Taiwan Provincial Government, Nantou, Taiwan.
[PDAF] Provincial Department of Agriculture and Forestry. 1996. Plant protection of horticultural and special horticultural crops, 2nd ed. Department of Agriculture and Forestry, Taiwan Provincial Government, Nantou, Taiwan.
Penilla, R. P., A. D. Rodriguez, J. Hemingway, J. L. Torres, J. I. Arredondo-Jimenez, and M. H. Rodriguez. 1998. Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Med. Vet. Entomol. 12: 217-233.
Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: 2002-2007.
Prapanthadara, L., J. Hemingway, and A. J. Ketterman. 1995. DDT-resistance in Anopheles gambiae (Diptera, Culicidae) from Zanzibar, Tanzania, based on increased DDT-dehydrochlorinase activity of glutathione S-transferases. Bull. Entomol. Res. 85: 267-274.
Price, N. R., and P. A. Chapman. 1987. Resistance to methomyl in a laboratory selected and a field strain of the housefly, Musca domestica (L.). Pestic. Sci. 20: 167-177.
Pridgeon, J. W., L. Zhang, and N. N. Liu. 2003. Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach, Blattella germanica (L.). Gene 314: 157-163.
Raymond, M., A. Callaghan, P. Fort, and N. Pasteur. 1991. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature 350: 151-153.
Rider, S. D., G. E. Wilde, and S. Kambhampati. 1998. Genetics of esterase-mediated insecticide resistance in the aphid Schizaphis graminum. Heredity 81: 14-19.
Rotundo, R. L. 1984. Asymmetric acetylcholinesterase is assembled in the Golgi apparatus. Proc. Natl. Acad. Sci. U.S.A. 81: 479-483.
Russell, R. J., C. Claudianos, P. M. Campbell, I. Horne, T. D. Sutherland, and J. G. Oakeshott. 2004. Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pestic. Biochem. Physiol. 79: 84-93.
Scharf, M. E., J. J. Neal, and G. W. Bennett. 1997. Changes of insecticide resistance levels and detoxication enzymes following insecticide selection in the German cockroach, Blattella germanica (L.). Pest. Biochem. Physiol. 59: 67-79.
Scott, J. G., and G. P. Georghiou. 1986. Mechanisms responsible for high levels of permethrin resistance in the housefly. Pestic. Sci. 17: 195-206.
Scott, J. G., P. Sridhar, and N. Liu. 1996. Adult specific expression and induction of cytochrome P450lpr in house flies. Arch. Insect Biochem. Physiol. 31: 313-323.
Scott, J. G., N. Liu, and Z. M. Wen. 1998. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp. Biochem. Physiol. C, Pharmacol. Toxicol. Endocrinol. 121: 147-155.
Scott, J. G. 1999. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. 29: 757-777.
Sheppard, D. C., and J. A. Joyce. 1998. Increased susceptibility of pyrethroid-resistant horn flies (Diptera: Muscidae) to chlorfenapyr. J. Econ. Entomol. 91: 398-400.
Shi, M. A., J. Z. Yuan, J. Wu, P. J. Zhuang, X. F. Wu, and Z. H. Tang. 2002. Kinetic analysis of acetylcholinesterase in a propoxur-resistant strain of housefly (Musca domestica) from Shanghai, China. Pestic. Biochem. Physiol. 72: 72-82.
Shishido, T., K. Usui, M. Sato, and J. Fukami. 1972. Enzymatic conjugation of diazinon with glutathione in rat and American cockroach. Pest. Biochem. Physiol. 2: 51-63.
Siegfried, B. D., J. G. Scott, R. T. Roush, and B. C. Zeichner. 1990. Biochemistry and genetics of chlorpyrifos resistance in the German cockroach, Blattella germanica (L). Pest. Biochem. Physiol. 38: 110-121.
Silman, I., and A. H. Futerman. 1987. Modes of attachment of acetylcholinesterase to the surface-membrane. Eur. J. Biochem. 170: 11-22.
Silveira, E. J. 1990. Technical methomyl: physical and chemical characteristics. Wilmington, Delaware, E.I. Du Pont de Nemours and Co., Agricultural Products Department (Unpublished report No. AMR-1753-90).
Skouras, P. J., J. T. Margaritopoulos, N. A. Seraphides, I. M. Ioannides, E. G. Kakani, K. D. Mathiopoulos, and J. A. Tsitsipis. 2007. Organophosphate resistance in olive fruit fly, Bactrocera oleae, populations in Greece and Cyprus. Pest Manag. Sci. 63: 42-48.
Smallman, B. N., and A. Mansingh. 1969. Cholinergic system in insect development. Annu. Rev. Entomol. 14: 387-408.
Smissaert, H. R. 1964. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science 143: 129-131.
Soreq, H., and S. Seidman. 2001. Acetylcholinesterase-new roles for an old actor. Nat. Rev. Neurosci. 2: 294-302.
Srigiriraju, L., P. J. Semtner, T. D. Anderson, and J. R. Bloomquist. 2009a. Esterase-based resistance in the tobacco-adapted form of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) in the eastern United States. Arch. Insect Biochem. Physiol. 72: 105-123.
Srigiriraju, L., P. J. Semtner, T. D. Anderson, and J. R. Bloomquist. 2009b. Monitoring for MACE resistance in the tobacco-adapted form of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) in the eastern United States. Crop Prot. 29: 197-202.
Stumpf, N., and R. Nauen. 2001. Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 94: 1577-1583.
Sussman, J. L., M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, and I. Silman. 1991. Atomic-structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253: 872-879.
[TACTRI] Taiwan Agricultural Chemicals and Toxic Substances Research Institute. 2010. Plant protection manual. Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Taichung, Taiwan.
Tang, A. H., and C. P. D. Tu. 1994. Biochemical characterization of Drosophila glutathione S-transferases D1 and D21. J. Biol. Chem. 269: 27876-27884.
Tao, J. H. 1952. Ecological survey and control of fruit fly experiments. J. Taiwan Agric. Res. 3: 17-37. (in Chinese)
Tao, L. M., M. G. Shi, J. Z. Yuang, P. J. Zhuang, C. X. Zhang, and Z. H. Tang. 2006. Resistance pattern and point mutations of insensitive acetylcholinesterase in a carbamate-resistant strain of housefly (Musca domestica). Pestic. Biochem. Physiol. 86: 1-6.
Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
Toutant, J. P. 1989. Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular-forms. Prog. Neurobiol. 32: 423-446.
Townsend, B. A., and G. P. Carlson. 1981. Effect of halogenated benzenes on the toxicity and metabolism of malathion, malaoxon, parathion, and paraoxon in mice. Toxicol. Appl. Pharmacol. 60: 52-61.
Tripathi, R. K., and R. D. Obrien. 1973. Insensitivity of acetylcholinesterase as a factor in resistance of houseflies to organophosphate Rabon. Pest. Biochem. Physiol. 3: 495-498.
Tsao, T. C. Y., Y. C. Juang, R. S. Lan, W. B. Shieh, and C. H. Lee. 1990. Respiratory failure of acute organophosphate and carbamate poisoning. Chest 98: 631-636.
Udenfriend, S., and K. Kodukula. 1995a. How glycosyl-phosphatidylinositol-anchored membrane proteins are made. Annu. Rev. Biochem. 64: 563-591.
Udenfriend, S., and K. Kodukula. 1995b. Prediction of omega site in nascent precursor of glycosylphosphatidylinositol protein. Methods Enzymol. 250: 571-582.
van Asperen, K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. J. Insect Physiol. 8: 401-414.
Van Laecke, K., and D. Degheele. 1993. Effect of insecticide-synergist combinations on the survival of Spodoptera exigua. Pestic. Sci. 37: 283-288.
van Zwaluwenburg, R. H. 1947. Notes and exhibitions. Proc. Hawaii. Entomol. Soc. 13: 8.
Villatte, F., V. Marcel, S. Estrada-Mondaca, and D. Fournier. 1998. Engineering sensitive acetylcholinesterase for detection of organophosphate and carbamate insecticides. Biosens. Bioelectron. 13: 157-164.
Villatte, F., P. Ziliani, V. Marcel, P. Menozzi, and D. Fournier. 2000. A high number of mutations in insect acetylcholinesterase may provide insecticide resistance. Pestic. Biochem. Physiol. 67: 95-102.
Vontas, J. G., M. J. Hejazi, N. J. Hawkes, N. Cosmidis, M. Loukas, and J. Hemingway. 2002. Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol. Biol. 11: 329-336.
Vontas, J. G., N. Cosmidis, M. Loukas, S. Tsakas, M. J. Hejazi, A. Ayoutanti, and J. Hemingway. 2001. Altered acetylcholinesterase confers organophosphate resistance in the olive fruit fly Bactrocera oleae. Pestic. Biochem. Physiol. 71: 124-132.
Walsh, S. B., T. A. Dolden, G. D. Moores, M. Kristensen, T. Lewis, A. L. Devonshire, and M. S. Williamson. 2001. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J. 359: 175-181.
Weill, M., P. Fort, A. Berthomieu, M. P. Dubois, N. Pasteur, and M. Raymond. 2002. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Biol. Sci. 269: 2007-2016.
Weill, M., C. Malcolm, F. Chandre, K. Mogensen, A. Berthomieu, M. Marquine, and M. Raymond. 2004. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol. Biol. 13: 1-7.
Wheelock, G. D., and J. G. Scott. 1992a. Anti-P4501pr antiserum inhibits specific monooxygenase activities in LPR house fly microsomes. J. Exp. Zool. 264: 153-158.
Wheelock, G. D., and J. G. Scott. 1992b. The role of cytochrome P450lpr in deltamethrin metabolism by pyrethroid-resistant and susceptible strains of house flies. Pest. Biochem. Physiol. 43: 67-77.
Wilce, M. C. J., P. G. Board, S. C. Feil, and M. W. Parker. 1995. Crystal structure of a theta-class glutathione transferase. Embo J. 14: 2133-2143.
Wilkinson, C. F. 1967. Penetration, metabolism, and synergistic activity with carbaryl of some simple derivatives of 1,3-benzodioxide in the housefly. J. Agric. Food Chem. 15: 139-147.
Wilkinson, J. D., K. D. Biever, and D. L. Hostetter. 1983. Resistance of cabbage looper Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) to methomyl in Missouri. J. Kans. Entomol. Soc. 56: 59-61.
Yang, R. S. H., E. Hodgson, and Dauterma.Wc. 1971. Metabolism in Vitro of diazinon and diazoxon in susceptible and resistant houseflies. J. Agric. Food Chem. 19: 14-19.
Yu, S. J. 1992. Plant-allelochemical-adapted glutathione transferases in Lepidoptera. ACS Symp. Ser. 505: 174-190.
Yu, S. J. 2008. The mode of action of insecticides. pp. 115-139. In: S. J. Yu, ed. The toxicology and biochemistry of insecticides. CRC Press, Boca Raton.
Yu, S. J., S. N. Nguyen, and G. E. Abo-Elghar. 2003. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pestic. Biochem. Physiol. 77: 1-11.
Zhu, K. Y., and J. M. Clark. 1995. Comparisons of kinetic properties of acetylcholinesterase purified from azinphosmethyl-susceptible and resistant strains of Colorado potato beetle. Pest. Biochem. Physiol. 51: 57-67.
Zwick, T. C. and N. Malik. 1990. Aerobic metabolism of [1-14C] methomyl in Madera, Californica soil. Columbus, Ohio, Battelle Memorial Institute, Environmental Sciences Department (Unpublished report No. AMR-1543-89).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top