跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉建民
研究生(外文):Chien-Min Liu
論文名稱:利用超連續雷射光源進行二階非線性光學特性之頻譜研究
論文名稱(外文):Multispectral Second Order Susceptibility Measurement with Supercontinuum Generation
指導教授:朱士維
口試委員:劉子銘詹明哲林彥穎
口試日期:2010-10-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:57
中文關鍵詞:非線性光學二倍頻頻譜分析生物光子晶體
外文關鍵詞:nonlinear opticssecond harmonic generationspectral analysisbio-photonics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非線性光學提供非線性頻率轉換以及光學切片等等性質,使得非線性光學在
於雷射頻率轉換以及生物影像掃描上有很重要的應用。基於非線性光學現象較為
微弱,非線性頻譜研究也是一門重要的課題。不僅如此,分子的結構與非線性光
現象的產生更是息息相關,因此分子非線性光譜也拿來作為研究物質分子結構組
成的重要指標。
近年來有研究指出生物的組織結構有類似於光子晶體的排列,而非線性光學
特性的頻譜掃描或許能作為用來驗證這種結構的指標。
在這裡我們利用超連續雷射光源進行鈮酸鋰與肢內側副韌帶的二倍頻影像頻
譜掃描。我們以鈮酸鋰的二倍頻頻譜反應來修正掃描系統對於光波長的不同反應
。藉由觀察肢內側副韌帶在 700 奈米到 1200 奈米之間的二階非線性反應,我們不
僅觀察到肢內側副韌帶對於 800 奈米與 1000 奈米有良好的反應,而且還發現了有
類似於光子晶體對於二階非線性反應的規律震盪。藉由比對文獻上對於光子晶體
的敘述,不僅可以用來驗證生物光子晶體結構的存在,而且可以對於肢內側副韌
帶發生二倍頻光學現象的機制有更深一層的了解。

Nonlinear optical effects have been widely used in many criteria such as in-vivo
multiphoton microscopy and new frequency generation. Due to the weakness of
nonlinear optical phenomenon, nonlinear spectrum was widely investigated.
Moreover, due to a close relation between molecular structure and intensity of emitted
nonlinear signal, it also helps for understanding the intrinsic structure inside media,
including biomaterials.
About a decade ago, an enhancement of second harmonic generation found in
photonic band gap (PBG) structure was introduced. The concept of bio-photonics
among biomaterials may be verified by a nonlinear second-order spectral response
analysis.
We performed multispectral second harmonic imaging microscopy (SHIM) in
lithium niobate (LiNbO3) and medial collateral ligament (MCL) with a
supercontinuum laser source generated in a photonic crystal fiber. Via analyzing the
calibrated second harmonic generation (SHG) spectrum, we observed not only a
strong response with light of 800nm and 1000nm, but also a regular oscillation in the
second-order nonlinear response of MCL very similar to that of photonic band gap
(PBG) structure which indicates a possibility of bio-photonics. However, there are
still some works left for further confirm of bio-photonics by multispectrocopy.


Content
Thesis committee approvement……………………………………...………………………………….……1
Acknowledgement…………………………………………………………………………………………………….2
Chinese abstract....…………………………………………………………………………………………………….3
English abstract....…………………………………………………………………………………………………….4
Chapter 1 Introduction………………………………………………………………………………………………9
1.1 Nonlinear optics………………………………………………………………………………….……9
1.2 Application for nonlinear spectrum: bio-photonics………...………………….…..…10
1.3 Sources and methods for nonlinear spectroscopy………..…………………….…..…11
Chapter 2 Theory…………………………………………………………………………………….………………13
2.1 Second harmonic generation (SHG).…………………….……………………….….…13
2.1.1 Optical sectioning…………………………………………………………………………….16
2.1.2 Penetration depth…………………………………………………………………………….17
2.2 Photonic band gap (PBG)………………..………………………………………….….……18
2.3 Supercontinuum (SC)……..………………..………………………………………….….……20
2.3.1 Self phase modulation (SPM)…………………………..…………………………….20
2.3.2 Four-wave mixing………………………………………..…………………………….21
2.3.3 Soliton self-frequency shift……………………………..…………………………….21
2.3.4 Supercontinuum generation in a photonic crystal fiber………………………22
Chapter 3 Experimental setup……………………………………………………………………….…………24
3.1 Brief introduction…………………............…………………….……………………….……24
3.2 Sample preparation…………………............…………….…….……………………….……25
3.3 Source…………………............……………………………………….……………………….……26
3.4 Wavelength selector………………….........…………………….……………………….……27
3.5 Autocorrelator…………………............…………………….…………………….……….……32
3.6 Spectrometer…………………............…………………….…………………………….….……34
3.7 Scanning system and objective…………………........…………………………….……34
3.8 Image acquisition.…………………............…………………….……………………….……35
Chapter 4 Result and discussion……………………………….………………………………….…………37
4.1 Properties of supercontinuum………………………………………………………….……37
4.2 Spectral images and discussion……………………………………………………………39
4.2.1 Lithium niobate (LN)……………………………………………………..…………………39
4.2.1.1. Spectrum acquisition………………………………………………………..……..39
4.2.1.2 Image acquisition……………………………………………………………………..40
4.2.2 Medial collateral ligament (MCL, composed of collagen)…………………44
4.2.2.1. Spectrum acquisition………………………………………………………..……..44
4.2.2.2 Image acquisition……………………………………………………………………..45
4.2.3 Approach to the real response…………………………………………………………...46
4.3 Future work………………………………………………………………………….…………………50
Chapter 5 Conclusion………….………………………..………….………………………………….…………51
Figure and table index…………………………………………………………………………………………….52
References…………………………………………………………………………………………………………......54

[1] P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical
harmonics”, Phys. Rev. Lett., 7, 4, 118-119 (1961)
[2] Y. W. Tzeng, Y. Y. Lin, and C. H. Huang, “Broadband tunable optical parametric
amplification from a single 50 MHz ultrafast fiber laser”, Opt. Express, 17, 9,
7304-7309 (2009)
[3] H. Bao, A. Boussioutas, R. Jeremy, “Second harmonic generation imaging via
nonlinear endomicroscopy”, Opt. Express, 18, 2, 1255-1260 (2010)
[4] K. Clays, S. V. Elshocht, and M. Chi, “Bacteriorhodopsin: a natural, efficient
(nonlinear) photonic crystal”, J. Opt. Soc. Am. B, 18, 10, 1474-1482 (2001)
[5] S. W. Chu, I. H. C hen, and T. M. Liu, “Nonlinear bio-photonic crystal effects
revealed with multimodal nonlinear microscopy”, J. Microsc-Oxford, 208, 190-200
(2002)
[6] S. Fine and W. P. Hansen, “Optical second harmonic generation in biological systems”,
Appl. Opt., 10, 10, 2350-2353 (1971)
[7] Y. Dumeige, P. Vidakovic, and S. Sauvage, “Enhancement of second-harmonic
generation in a one-dimensional semiconductor photonic band gap”, Appl. Phys. Lett.,
78, 20, 3021-3023 (2001)
[8] R. C. Miller and W. A. Nordland, “Dependence of second-harmonic- generation
coefficients of LiNbO3 on melt composition”, J. Appl. Phys., 42, 11, 4145-4147
(1971)
[9] M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of
visible and infrared nonlinear crystals”, Phys. Rev. B, 14, 4, 1693-1706 (1976)
[10] A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in
vivo by using second-harmonic generation and two-photon excited fluorescence”,
PNAS, 99, 17, 11014-11019 (2002)
[11] D. N. Hahn, G. T. Kiehne, and J. B. Ketterson, “Phase-matched optical
second-harmonic generation in GaN and AlN slab waveguides”, J. Appl. Phys., 85, 5,
2497-2501 (1999)
[12] R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass”, Phys. Rev. Lett., 24, 584-587 (1970)
[13] G. S. He, T. C. Lin, and P. N. Prasad, “New technique for degenerate two-photon absorption spectral measurements using femtosecond continuum generation”, Opt. Express, 10, 13, 566-574 (2002)
[14] R. Holzwarth, M. Zimmermann, Th. Udem, and T. W. Hansch, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser”, Opt. Lett., 26, 17, 1376-1378 (2001)
[15] L. D. Boni, A. A. Andrade, and L. Misoguti, “Z-scan measurements using femtosecond continuum generation”, Opt. Express, 12, 17, 3921-3927 (2004)
[16] M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “White-light continuum Z-scan technique for nonlinear materials characterization”, Opt. Express, 12, 16, 3820-3826 (2004)
[17] M. Balu, J. Hales, D. J. Hagan, and E. W. Van Stryland, “Dispersion of nonlinear refraction and two- photon absorption using a white-light continuum Z-scan”, Opt. Express, 13, 10, 3594-3599 (2005)
[18] R. W. Boyd (3rd Ed.), Nonlinear optics (Academic press)
[19] A. Yariv, (6th Ed.), Photonics: optical electronics in modern communications (Oxford)
[20] E. Hecht (4th Ed.), Optics (Addison Wesley)
[21] J. P. Dowling, “Dipole emission in finite photonic bandgap structures: An Exactly solvable one-dimensional model”, J. Lightwave Tech., 17, 11, 2142-2151 (1999)
[22] A.V. Gorbach, D.V. Skryabin, J.M. Stone, J.C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum”, Opt. Express, 14, 21, 9854-9863 (2006)
[23] A. M. Zheltikov, “Let there be white light: supercontinuum generation by ultrashort laser pulses”, Physics Uspekhi, 49, 6, 605-628 (2006)
[24] J. Y. Yu, C. S. Liao, and Z. Y. Zhuo, “A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy”, Rev. Sci. Instrum., 80, 113074 (2009)
[25] S. Sanna and W. G. Schmidt, “Lithium niobate X-cut, Y-cut, and Z-cut surfaces from ab initio theory”, Phys. Rev. B, 81, 214116 (2010)
[26] M. Franchi, M. Quaranta, and M. Macciocca, “Collagen fibre arrangement and functional crimping pattern of the medial collateral ligament in the rat knee”, Springer-Verlag (2010)
[27] C. Niyibizi, K. Kavalkovich, and T. Yamaji, “Type V collagen is increased during rabbit medial collateral ligament healing”, Springer-Verlag (2000)
[28] I. Shoji, T. Kondo, and A. Kitamoto, “Absolute scale of second-order nonlinear-optical coefficients”, J. Opt. Soc. Am. B, 14, 9, 2268-2294 (1997)
[29] E. Fazio, F. Pettazzi, M. Centini, “Complete spatial and temporal locking in phase-mismatched second-harmonic generation”, Opt. Express, 17, 5, 3141-3147 (2009)
[30] R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization”, Ph.D. thesis, Stanford University (2006)
[31] Z. Wang, T. Zhai, J. Lin, and D. Liu, “Effect of surface truncation on mode density in photonic crystals”, J. Opt. Soc., Am. B, 24, 9, 2416-2420 (2007)
[32] G. D’Aguanno, M. Centini, and C. Sibilia, “Enhancement of chi2 cascading processes in one-dimensional photonic bandgap structures”, Opt. Lett., 24, 23, 1663-1665 (1999)
[33] M. Scalora, M. J. Bloemer, and A. S. Manka, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures”, Phys., Rev., A, 56, 4, 3166-3174 (1997)
[34] X. J. Wang, T. E. Milner, and M. C. Chang, “Group refractive index measurement of dry and hydrated type I collagen films using optical low- coherence reflectometry”, J. Biomed. Opt., 01, 02, 212-216 (1996)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top