|
[1]R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine 4, 396-402 (1902). [2]A. Hessel, and A. A. Oliner, "A new theory of Woods anomalies on optical gratings," Applied Optics 4, 1275-& (1965). [3]L. Rayleigh, "Note on the remarkable case of diffraction spectra described by Prof. Wood," Philosophical Magazine 14, 60-65 (1907). [4]W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Physical Review B 59, 12661 (1999). [5]J. A. Porto, Garc, iacute, F. J. a-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Physical Review Letters 83, 2845 (1999) [6]W. Cai, R. Sainidou, J. J. Xu, A. Polman, and F. J. G. de Abajo, "Efficient Generation of Propagating Plasmons by Electron Beams," Nano Letters 9, 1176-1181 (2009). [7]F. J. G. de Abajo, "Optical excitations in electron microscopy," Reviews of Modern Physics 82, 209-275 (2010). [8]E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, "Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence Spectroscopy," Nano Letters 7, 2843-2846 (2007). [9]B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Physical Review Letters 77, 1889-1892 (1996). [10]A. V. Zayats, and Smolyaninov, II, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A-Pure Appl. Opt. 5, S16-S50 (2003). [11]A. Bouhelier, and G. P. Wiederrecht, "Surface plasmon rainbow jets," Optics Letters 30, 884-886 (2005). [12]H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Applied Physics Letters 83, 4625-4627 (2003). [13]H. A. Chen, H. Y. Lin, and H. N. Lin, "Localized Surface Plasmon Resonance in Lithographically Fabricated Single Gold Nanowires," Journal of Physical Chemistry C 114, 10359-10364 (2010). [14]V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of giama and mu," Soviet Physics Uspekhi-Ussr 10, 509-& (1968). [15]J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters 85, 3966-3969 (2000). [16]J. Pendry, "Comment on "Negative refraction makes a perfect lens" - Reply," Physical Review Letters 87 (2001). [17]A. G. Ramm, "Does negative refraction make a perfect lens?," Physics Letters A 372, 6518-6520 (2008). [18]R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [19]N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [20]C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007). [21]S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature 466, 735-738 (2010). [22]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184-4187 (2000). [23]R. B. Greegor, C. G. Parazzoli, K. Li, and M. H. Tanielian, "Origin of dissipative losses in negative index of refraction materials," Applied Physics Letters 82, 2356-2358 (2003). [24]M. Bayindir, K. Aydin, E. Ozbay, P. Markos, and C. M. Soukoulis, "Transmission properties of composite metamaterials in free space," Applied Physics Letters 81, 120-122 (2002). [25]T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [26]N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005). [27]S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004). [28]S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Physical Review Letters 94 (2005). [29]S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Physical Review Letters 95 (2005). [30]C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Physical Review Letters 95 (2005). [31]G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, and C. M. Soukoulis, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Optics Letters 30, 3198-3200 (2005). [32]V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Optics Letters 30, 3356-3358 (2005). [33]G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006). [34]G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters 32, 53-55 (2007). [35]J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science 321, 930-930 (2008). [36]N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials 7, 31-37 (2008). [37]C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, "Polarization-independent negative-index metamaterial in the near infrared," Optics Letters 34, 704-706 (2009). [38]S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, "A single-layer wide-angle negative-index metamaterial at visible frequencies," Nat Mater 9, 407-412 (2010). [39]S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption," Nature 412, 697-698 (2001). [40]K. Takada, H. B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Applied Physics Letters 86 (2005). [41]S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Optics Letters 22, 132-134 (1997). [42]http://www.nanoscribe.de. [43]http://www.lzh.de/en. [44]J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325, 1513-1515 (2009). [45]http://www.fibics.com/imagegallery/ [46]http://www.dailymail.co.uk/sciencetech/article-1232987 [47]Gandhi, "Characterisation of focused ion beam induced process (etching and metal deposition)," PhD Thesis Oregon Graduate Institute (1991). [48]T. Tao, J. S. Ro, J. Melngailis, Z. L. Xue, and H. D. Kaesz, " Focused ion-beam induced deposition of platinum," Journal of Vacuum Science & Technology B 8, 1826-1829 (1990). [49]I. Haller, M. Hatzakis, and Srinivas.R, "High-resolution positive resists for electron beam exposure," Ibm Journal of Research and Development 12, 251-& (1968). [50]http://www.microchem.com/. [51]13.http://www.zeon.co.jp/business_e/enterprise/imagelec/imagelec.html. [52]http://zeonchemicals.com/ElectronicMaterials/. [53]http://www.dowcorning.com/. [54]Elionix Inc., "Instruction manual for control system for electron beam lithography system, Page 10,21." [55]Elionix Inc., "ELS-7500EX Instruction Manual." [56]http://www.microchem.com/ [57]http://zeonchemicals.com/ElectronicMaterials/ [58]S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, "Optical properties of discontinuous gold films," Phys. Rev. B 18, 674 (1978). [59]Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Plasmonic nanoantenna arrays for the visible," Metamaterials 2, 45-51 (2008). [60]H. Ehrenreich, H. R. Philipp, and B. Segall, "Optical properties of Aluminum," Physical Review 132, 1918-& (1963). [61]M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Applied Optics 22, 1099-1119 (1983). [62]M. Fox, Optical properies of solids (Oxford ; New York : Oxford University Press, 2001, 2001). [63]B. F. Bai, J. Laukkanen, A. Lehmuskero, and J. Turunen, "Simultaneously enhanced transmission and artificial optical activity in gold film perforated with chiral hole array," Physical Review B 81 (2010).
|