跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威廷
研究生(外文):Wei Ting Chen
論文名稱:次波長太極結構的漩渦狀能量流分析
論文名稱(外文):Electromagnetic energy vortex associated with sub-wavelength plasmonic Taiji marks
指導教授:蔡定平
口試委員:周趙遠鳳嚴大任張之威任貽均
口試日期:2010-12-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:67
中文關鍵詞:表面電漿子漩渦狀能量流超穎材料
外文關鍵詞:Surface plasmonEnergy vortexMetamaterials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在東方的文化裡,太極圖案是一種具有互補性的特殊結構。在本文中,先利用電子束微影技術在玻璃基板上製作70x70個直徑為500 nm、厚度為30 nm與週期為700 nm的黃金太極陣列,並且使用有限元素分析法和傅立葉轉換光譜儀研究正向入射情況下,太極結構的穿透光譜,實驗與模擬非常的吻合,我們發現由於太極圖案的特殊結構,可以在近場區域產生漩渦狀的能量流,並且不同入射光的偏振狀態下對應到漩渦狀能量流的流動方向也有所不同,我們也提出個物理模型來解釋這特別的漩渦狀能量流。

The Taiji symbol is a very old schematic representation of two opposing but complementary patterns in oriental civilization. Using electron beam lithography, we fabricated an array of 70x70 gold Taiji marks with 30 nm thickness and a total area of 50x50 µm2 on a fused silica substrate. The diameter of each Taiji mark is 500 nm, while the period of the array is 700 nm. Here we present experimental as well as numerical simulation results pertaining to plasmonic resonances of several Taiji nano-structures under normal illumination. We have identified a Taiji structure with a particularly interesting vortex-like Poynting vector profile, which could be attributed to the special shape and dimensions of the Taiji symbol.

目錄
口試委員會審定書 I
中文摘要 II
英文摘要 III
致謝 IV
圖目錄 VI
表目錄 IX
第一章 超穎材料與表面電漿子之簡介與應用 1
1.1 前言 1
1.2 表面電漿子發展背景與原理 1
1.3 超穎材料發展背景與原理 15
1.5 參考資料 19
第二章 超穎材料製作方法簡介 24
2.1 前言 24
2.2 雙光子聚合術 26
2.3 聚焦離子束技術 27
2.4 電子束直寫技術 30
2.5 參考資料 36
第三章 樣品製作、模擬與量測 38
3.1 樣品製作 38
3.1-1 圖檔設計與轉檔 38
3.1-2 製程步驟與參數設定 39
3.1-3 蒸鍍與舉離製程 42
3.2 數值模擬 46
3.3 樣品光譜量測 51
3.3-1 傅立葉轉換光譜儀原理 51
3.3-2 量測過程 54
3.4 參考資料 55
第四章 實驗結果與分析 56
4.1 實驗結果 56
4.2 結果分析 59
4.3 參考資料 64
第五章 總結 65
附錄 66



[1]R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine 4, 396-402 (1902).
[2]A. Hessel, and A. A. Oliner, "A new theory of Woods anomalies on optical gratings," Applied Optics 4, 1275-& (1965).
[3]L. Rayleigh, "Note on the remarkable case of diffraction spectra described by Prof. Wood," Philosophical Magazine 14, 60-65 (1907).
[4]W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Physical Review B 59, 12661 (1999).
[5]J. A. Porto, Garc, iacute, F. J. a-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Physical Review Letters 83, 2845 (1999)
[6]W. Cai, R. Sainidou, J. J. Xu, A. Polman, and F. J. G. de Abajo, "Efficient Generation of Propagating Plasmons by Electron Beams," Nano Letters 9, 1176-1181 (2009).
[7]F. J. G. de Abajo, "Optical excitations in electron microscopy," Reviews of Modern Physics 82, 209-275 (2010).
[8]E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, "Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence Spectroscopy," Nano Letters 7, 2843-2846 (2007).
[9]B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Physical Review Letters 77, 1889-1892 (1996).
[10]A. V. Zayats, and Smolyaninov, II, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A-Pure Appl. Opt. 5, S16-S50 (2003).
[11]A. Bouhelier, and G. P. Wiederrecht, "Surface plasmon rainbow jets," Optics Letters 30, 884-886 (2005).
[12]H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Applied Physics Letters 83, 4625-4627 (2003).
[13]H. A. Chen, H. Y. Lin, and H. N. Lin, "Localized Surface Plasmon Resonance in Lithographically Fabricated Single Gold Nanowires," Journal of Physical Chemistry C 114, 10359-10364 (2010).
[14]V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of giama and mu," Soviet Physics Uspekhi-Ussr 10, 509-& (1968).
[15]J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters 85, 3966-3969 (2000).
[16]J. Pendry, "Comment on "Negative refraction makes a perfect lens" - Reply," Physical Review Letters 87 (2001).
[17]A. G. Ramm, "Does negative refraction make a perfect lens?," Physics Letters A 372, 6518-6520 (2008).
[18]R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[19]N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[20]C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007).
[21]S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature 466, 735-738 (2010).
[22]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184-4187 (2000).
[23]R. B. Greegor, C. G. Parazzoli, K. Li, and M. H. Tanielian, "Origin of dissipative losses in negative index of refraction materials," Applied Physics Letters 82, 2356-2358 (2003).
[24]M. Bayindir, K. Aydin, E. Ozbay, P. Markos, and C. M. Soukoulis, "Transmission properties of composite metamaterials in free space," Applied Physics Letters 81, 120-122 (2002).
[25]T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[26]N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Optics Letters 30, 1348-1350 (2005).
[27]S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
[28]S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Physical Review Letters 94 (2005).
[29]S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Physical Review Letters 95 (2005).
[30]C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Physical Review Letters 95 (2005).
[31]G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, and C. M. Soukoulis, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Optics Letters 30, 3198-3200 (2005).
[32]V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Optics Letters 30, 3356-3358 (2005).
[33]G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[34]G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters 32, 53-55 (2007).
[35]J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science 321, 930-930 (2008).
[36]N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials 7, 31-37 (2008).
[37]C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, "Polarization-independent negative-index metamaterial in the near infrared," Optics Letters 34, 704-706 (2009).
[38]S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, "A single-layer wide-angle negative-index metamaterial at visible frequencies," Nat Mater 9, 407-412 (2010).
[39]S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption," Nature 412, 697-698 (2001).
[40]K. Takada, H. B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Applied Physics Letters 86 (2005).
[41]S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Optics Letters 22, 132-134 (1997).
[42]http://www.nanoscribe.de.
[43]http://www.lzh.de/en.
[44]J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325, 1513-1515 (2009).
[45]http://www.fibics.com/imagegallery/
[46]http://www.dailymail.co.uk/sciencetech/article-1232987
[47]Gandhi, "Characterisation of focused ion beam induced process (etching and metal deposition)," PhD Thesis Oregon Graduate Institute (1991).
[48]T. Tao, J. S. Ro, J. Melngailis, Z. L. Xue, and H. D. Kaesz, " Focused ion-beam induced deposition of platinum," Journal of Vacuum Science & Technology B 8, 1826-1829 (1990).
[49]I. Haller, M. Hatzakis, and Srinivas.R, "High-resolution positive resists for electron beam exposure," Ibm Journal of Research and Development 12, 251-& (1968).
[50]http://www.microchem.com/.
[51]13.http://www.zeon.co.jp/business_e/enterprise/imagelec/imagelec.html.
[52]http://zeonchemicals.com/ElectronicMaterials/.
[53]http://www.dowcorning.com/.
[54]Elionix Inc., "Instruction manual for control system for electron beam lithography system, Page 10,21."
[55]Elionix Inc., "ELS-7500EX Instruction Manual."
[56]http://www.microchem.com/
[57]http://zeonchemicals.com/ElectronicMaterials/
[58]S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, "Optical properties of discontinuous gold films," Phys. Rev. B 18, 674 (1978).
[59]Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Plasmonic nanoantenna arrays for the visible," Metamaterials 2, 45-51 (2008).
[60]H. Ehrenreich, H. R. Philipp, and B. Segall, "Optical properties of Aluminum," Physical Review 132, 1918-& (1963).
[61]M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Applied Optics 22, 1099-1119 (1983).
[62]M. Fox, Optical properies of solids (Oxford ; New York : Oxford University Press, 2001, 2001).
[63]B. F. Bai, J. Laukkanen, A. Lehmuskero, and J. Turunen, "Simultaneously enhanced transmission and artificial optical activity in gold film perforated with chiral hole array," Physical Review B 81 (2010).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top