跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周芷吟
研究生(外文):Chih-Yin Chou
論文名稱:熱力學第二定律基本概念融入能量教學之探討
論文名稱(外文):Lecturing on Energy by Introducing Fundamental Concepts of the Second Law of Thermodynamics
指導教授:傅昭銘傅昭銘引用關係
口試委員:黃萬居胡崇德葉蓉樺
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:223
中文關鍵詞:熱力學第二定律能量守恆能源教育多重語態符號學論述分析架構
外文關鍵詞:the second law of thermodynamicsthe law of conservation of energyenergy educationmultimodal semiotics discourse analysis framework
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在引入熱力學第二定律基本概念以進行能量教學活動設計,透過多重語態符號學論述分析及實際教學研究,探討教學活動設計之效能及對學生能量概念理解和應用能力的影響。能量與熱力學等概念為能源科技最重要之知識基礎,雖然目前積極推展的能源教育相關教材甚多,然而鮮少針對熱力學基本定律著手做為能源教育之概念建構基礎。故本研究嘗試從物理基礎概念的角度思考能源議題,在課程綱要規定之能量基本概念的教學內容中,引入熱力學第二定律基本概念,以引導學生將能量科學知識與能源議題做連結,並成為面臨能源相關議題時之推理思惟依據。
本研究採用「多重語態符號學論述分析架構(multimodal semiotics discourse analysis framework)」分析能量教學活動設計,從符號語態使用與意義建構來檢視教學活動之效能。執行上乃取樣自台北市某市立高中一年級52名學生進行教學研究,教學活動分為「能量守恆與熱力學第一定律」與「熱力學第二定律與效率」兩單元,分別在教學前與兩次教學活動後以自編之能量概念認知測驗進行施測,並結合晤談等方式以探討學生之概念理解及應用情形。整理上述分析得到結果如下:
一、 根據多重語態符號學論述分析架構之分析,教學活動中使用多重語態之符號並說明各符號間的關聯,可有效呈現與傳遞科學概念。透過生活實例與師生問答,可縮短日常經驗與科學知識的距離,並啟發學生主動參與意義建構。
二、 根據引入熱力學基本概念之教學活動的實際教學研究結果,學生在教學後對能量守恆與熱力學第一定律、熱力學第二定律與效率等概念的理解皆有顯著提升。
三、 且根據前述實際教學研究結果,學生在整體教學後應用能量概念進行分析判斷之能力有逐步顯著之提升。尤其在熱力學第二定律基本概念引入教學後,學生的判斷結果之正確性及判斷概念依據的精確性皆有顯著進步。
本研究從理論分析與實際教學兩方面進行嘗試性的初探,研究結果顯示引入熱力學基本定律可以提升學生對能量概念之建構學習,此結果應可提供做為能源教育的思考參考。

The goal of this study was to develop educational activities for energy concepts by integrating fundamental concepts of the second law of thermodynamics. Via multimodal semiotics discourse analysis and practical work, the study examined the effectiveness of the educational activities design, and how it influenced students’ comprehension and their ability to apply energy concepts.
The concepts of energy and thermodynamics were the most important foundational knowledge of energy technology. Although there were plenty teaching materials of energy education that had been fully applied so far, very few of them focused on fundamental concepts of thermodynamics serving as the basis of energy education. On this account, this study attempted to reflect on the energy issues from the perspective of fundamental physics concepts, trying to guide students to connect the scientific knowledge with energy issues by integrating the fundamental concepts of the second law of thermodynamics into the basic energy concepts in secondary school curriculum, and to take them as the basic inferential thoughts for energy-related issues.
This study adopted the “multimodal semiotics discourse analysis framework” to examine the effectiveness of the design of educational activities by analyzing the use of multimodal signs in teaching sequences and the meaning they constructed. The educational research had been conducted by sampling 52 students in a certain Taipei Municipal high school, and the educational activities were divided into two units: “the law of conservation of energy and the first law of thermodynamics” and “the second law of thermodynamics and efficiency”. The self-developed cognitive examination of energy concepts was conducted before and after the two educational activities respectively, and the semi-structure interview was also employed to explore students’ understanding and application of energy concepts. The results of the analysis mentioned above were listed:
(1) According to the analysis of multimodal semiotics discourse analysis framework, using multimodal signs and explaining the relation between each signs in educational activities could present and communicate scientific concepts effectively. Furthermore, the teaching sequences adopted examples in daily life and questioning approach could shorten the distance between everyday experiences and scientific knowledge and inspire students to participate in meaning-making process actively.
(2) According to the results of the empirical study, the students’ comprehension of the law of conservation of energy, the second law of thermodynamics and efficiency had been significantly improved after courses.
(3) Moreover, according to the results of the empirical study, the students’ ability to apply the energy concepts to analyze and estimate energy issues also showed a gradually significant improvement after course. Especially after introducing the fundamental concepts of the second law of thermodynamics to the educational activities, the accuracy of the students’ estimation and the precision of the concepts they applied both had significantly improved.
In this study, a tentative and preliminary exploration was conducted both from the aspects of theoretical analysis and empirical study. The findings suggested that introducing the fundamental laws of thermodynamics to energy education could effectively enhance the students’ learning of energy concepts, and the results could also serve as the reference for designing teaching materials of energy education in the future.

誌謝 i
中文摘要 ii
英文摘要 iv
目錄 vi
圖目錄 viii
表目錄 ix

第一章 緒論 1
第一節 研究背景與重要性 1
第二節 研究目的與待答問題 4
第三節 名詞釋義 5
第四節 研究範圍與限制 7
第二章 文獻探討 8
第一節 物理學中之能量概念與相關教學研究 9
第二節 熱力學第二定律之內涵與融入中學課程之相關研究38
第三節 多重語態符號學論述分析架構 54
第三章 研究方法 72
第一節 研究對象 72
第二節 研究設計與流程 74
第三節 能量教學活動之發展與設計 78
第四節 能量概念認知測驗之發展與設計 97
第五節 資料蒐集與分析 108
第四章 研究結果與討論 112
第一節 能量概念教學活動效能之理論分析 112
第二節 能量概念教學活動對學生基本概念理解之影響 124
第三節 能量概念教學活動對學生概念應用能力之影響 141
第五章 結論與建議 173
第一節 結論 173
第二節 建議 176

參考文獻 180

附錄一 能量概念認知測驗-前測試題 187
附錄二 能量概念認知測驗-後測I試題 192
附錄三 能量概念認知測驗-後測II試題 194
附錄四 能量教學活動之多重語態符號學論述分析 196
附錄五 基本概念測驗各題前後測各選項選答率統計表 204
附錄六 應用測驗學生前後測概念類型與改變分析表 205
附錄七 學生晤談資料 216


一、中文部分
王大修、吳正雄(主編)(2010)。國民小學生活(第四冊)。台北市:南一書局。
甘漢銧、熊召弟、鍾聖校(1991)。小學自然科教學研究。台北市:師大書苑。
周芷吟、劉冠任、傅昭銘、葉蓉樺(2010)。從能量觀點進行國中能源教育之教學研究。載於朱慶琪主編,2011中華民國物理教學及示範研討會論文集(105-114頁)。桃園縣中壢市:中央大學物理系科教中心。
施惠(主編)(2009)。國民小學自然與生活科技(第一至八冊)。台北市:南一書局。
洪碧霞(譯)(1983)。有效的發問技巧(原作者:T. Kerry)。高雄市:復文。(原著出版年:1979)
胡壯麟、朱永生、張德祿、李戰子(2008)。系統功能語言學槪論(修訂版)。北京市 : 北京大學出版社。
高涌泉(主編)(2010)。基礎物理(一)全。台北市:龍騰文化。
涂志銘、林秀玉、張賴妙理、鄭湧涇(2008)。符合建構論理念的教學策略對植物的養分與能量概念學習的成效。科學教育學刊,16(1),75-103。
張玉成(1991)。教師發問技巧。台北市:心理。
教育部(2003)。九年一貫課程綱要。台北市:教育部。
教育部(2008)。九年一貫課程綱要。台北市:教育部。
教育部(2008)。普通高級中學課程綱要。台北市:教育部。
許銘欽(主編)(2010)。國民小學生活(第二冊)。台北市:南一書局。
郭重吉(主編)(2009)。國民中學自然與生活科技(第一至六冊)。台北市:南一書局。

二、外文部分
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing. New York: Longman.
Bloom, B.S., (Ed.). (1956). Taxonomy of educational objectives: The classification of educational goals: Handbook I, cognitive domain. New York: Longman.
Brown, D. E., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18, 237-261.
Danesi, M. (2007). The quest for meaning: a guide to semiotic theory and practice. Toronto: Toronto University Press.
Driver, R., & Scott, P. H. (1996). Curriculum development as research: A constructivist approach to science curriculum development and teaching. In R. Duit, & B. J. Fraser (Eds.). Improving Teaching and Learning in Science and Mathematics (pp. 94-107). New York: Teachers College Press.
Driver, R. (1988). Theory into practice II: A constructivist approach to curriculum development. In P. Fensham (Ed.), Development and dilemmas in science education (pp. 133-149). London, New York, Philadelphia: The Falmer Press.
Driver, R., & Bell, B. (1985). Students'' thinking and the learning of science: A constructivist view. School Science Review, 67, 443-456.
Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122.
Driver, R., &Warrington, L. (1985). Students'' use of the principle of energy conservation in problem situation. Physics Education, 20, 171-176.
Duit, R. (1981). Understanding energy as a conserved quantity: Remarks on the article by R. U. Sexl. European Journal of Science Education, 3(3), 291-301.
Duit, R. (1984). Learning the energy concept in school: Empirical results from The Philippines and West Germany. Physics Education, 19, 59-66.
Duit, R., & Treagust, D. F. (1995). Students’ conceptions and constructivist teaching approaches. In B. J. Fraser, & H. J. Walberg (Eds.), Improving science education (pp. 46-69). Chicago: The University of Chicago Press.
Eco, U. (1979). A theory of semiotics. Bloomington : Indiana University Press.
Eco, U. (1984). Semiotics and the philosophy of language. Bloomington : Indiana University Press.
Fetherston, T. (1999). Students constructs about energy and constructivist learning. Research in Science Education, 29, 515-525.
Gee, J. P. (2005). An introduction to discourse analysis: Theory and method (2nd ed.). New York: Routledge.
Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10, 61-98.
Goldring, H., & Osborne, J. (1994). Students'' difficulties with energy and related concepts. Physics Education, 29, 26-32.
Haber-Schaim, U. (1983). The role of the second law of thermodynamics in energy education. Physics Teacher, 21, 17-20.
Halliday, M. A. K. (1978). Language as social semiotic: The social interpretation of language and meaning. London: Edward Arnold.
Jaipal, K. (2010). Meaning making through multiple modalities in a biology classroom: A multimodal semiotics discourse analysis. Science Education, 94, 48-72.
Jaipal-Jamani, K. (2011). A Semiotics Discourse Analysis Framework: Understanding Meaning Making in Science Education Contexts. In S. C. Hamel (Ed.), Semiotics: Theory and Applications (pp. 191-208). New York: Nova Science.
Kelly, G. A. (1955). The psychology of personal constructs (Vols 1 and 2). New York: Norton.
Kemp, H. R. (1984). The concept of energy without heat or work. Physics Education, 19, 234-239.
Kesidou, S., & Duit, R. (1993). Students'' conceptions of the second law of thermodynamics: An interpretive study. Journal of Research in Science Teaching, 30, 85-106.
Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. London: Continuum.
Kruger, C., & Summers, M. (2000). Developing primary school children’s understanding of energy waste. Research in Science & Technological Education, 18, 5-21.
Krummel, R., Sunal, D. W., & Sunal, C. S. (2007). Helping students reconstruct conceptions of thermodynamics: Energy and heat. Science Activities: Classroom Projects and Curriculum Ideas, 44, 106-112.
Lawson, A. E., Abraham, M. R., & Renner, J. W. (1989). A theory of instruction: Using the learning cycle to teach science concepts and thinking skills. National Association for Research in Science Teaching.
Lemke, J. L. (1987). Strategic deployment of speech and action: A sociosemiotic analysis. In J. Evans, & J. Deely (Eds.), Semiotics (1983): Proceedings of the Semiotic Society of America ‘Snowbird’ Conference (pp. 67-79). New York: University Press of America.
Lemke, J. L. (1995). Textual politics: Discourse and social dynamics. London: Taylor & Francis.
Lemke, J. L. (1998a). Analysing verbal data: Principle, methods, and problems. In K. Tobin, & B. Fraser (Eds.), International handbook of science education (pp. 1175-1189). London: Kluwer Academic.
Lemke, J. L. (1998b). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin, & R. Veel (Eds.), Reading science: Critical and functional perspectives on discourses in science (pp. 87-113). London: Routledge.
Lemke, J. L. (2002). Multimedia semiotics: Genres for science education and scientific literacy. In M. J. Schleppegrell, & M. C. Colombi (Eds.), Developing advanced literacy in first and second languages: Meaning with power (pp. 21-44). Mahwah, NJ: Erlbaum.
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge: Cambridge University Press.
Papadouris, N., Constantinou, C., & Kyratsi, T. (2008). Students'' use of the energy model to account for changes in physical system. Journal of Research in Science Teaching, 45, 444-469.
Pierce, C. S. (1999). Logic as semiotic: The theory of signs. In M. Danesi, & D. Santerno (Eds.), The sign in theory and practice: A introductory reader in semiotics (pp. 71-93). Toronto: Canadian Scholar’s Press.
Pinto, R., Couso, D., & Gutierrez, R. (2005). Using research on teachers’ transformations of innovations to inform teacher education: The case of energy degradation. Science Education, 89, 38-55.
Ross, K. (1988). Matter scatter and energy anarchy: The second law of thermodynamics is simply common experience. School Science Review, 69, 438-445.
Roth, W. M., Bowen, M. G., & McGinn, M. (1999). Differences in graph-related practices between high school biology textbooks and scientific ecology journals. Journal of Research in Science Teaching, 36, 977-1019.
de Saussure, F. (1974). Course in general linguistics (W. Baskin, Trans.). London: Fontana /Collins.
Sexl, R. U. (1981). Some observations concerning the teaching of the energy concept. European Journal of Science Education, 3(3), 285-289.
Solomon, J. (1982). How children learn about energy or does the first law come first. School Science Review, 63, 415-422.
Solomon, J. (1983). Learning about energy: How pupils think in two domains. International Journal of Science Education, 5, 49-59.
Solomon, J. (1992). Getting to know about energy in school and society. London: Falner Press.
Summers, M., & Kruger, C. (1992). Research into English primary school teachers'' understanding of the concept energy. Evaluation & Research in Education, 6, 95-109.
Summers, M., Kruger, C., Mant, J., & Childs, A. (1998). Developing primary teachers’ understanding of energy efficiency. Educational Research, 40, 311-328.
Taber, K. S. (1989). Energy: By many other names. School Science Review, 70, 57-62.
Trumper, R. (1990). Being constructive: An approach to the teaching of the energy concept - part one. International Journal of Science Education, 12, 343-354.
Trumper, R. (1993). Children''s energy concepts: A cross-age study. International Journal of Science Education, 15, 139-148.
Trumper, R. (1996). A survey of Israeli physics students’ conceptions of energy in pre-service training high school teachers. Research in Science and Technological Education, 14(2), 179-192.
Trumper, R. (1997). Applying conceptual conflict strategies in the learning of the energy concept. Research in Science and Technological Education, 15, 5-18.
Trumper, R., Raviolo, A., & Shnersch, A. (2000). A cross-cultural survey of conceptions of energy among elementary school teachers in training: Empirical results from Israel and Argentina. Teaching and Teacher Education, 16, 697-714.
Watts, D. M. (1983). Some alternative view of energy. Physics Education, 18, 213-217.
Watts, D. M., & Gilbert, J. K. (1983). Enigmas in school science: Students'' conceptions for scientifically associated words. Research in Science & Technological Education, 1, 161-171.
White, R., & Gunstone, R. (1992). Prediction-observation-explanation. In R. White & R. Gunstone (Eds.), Probing understanding (pp. 44-64). London: The Falmer Press.
White, R. T. (1992). Implications of recent research on learning for curriculum and assessment. Journal of Curriculum Studies, 24, 153-164.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top