跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 03:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:伍志弘
研究生(外文):Chih-Hong Wu
論文名稱:單根二氧化錫奈米線/二氧化鈦奈米顆粒複合材料之光導性質研究
論文名稱(外文):Photoconductivity of Single SnO2 Nanowire/TiO2 Nanoparticles Composites
指導教授:陳永芳陳永芳引用關係
口試委員:林泰源梁啟德
口試日期:2011-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:47
中文關鍵詞:二氧化錫二氧化鈦光電導性第二型異質結構
外文關鍵詞:SnO2TiO2photoconductivityType II heterostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究利用金微米線方法製備單根二氧化錫奈米線裝置且探討藉由二氧化鈦奈米顆粒表面的修飾,二氧化錫奈米線裝置增強的光導特性。我們發現,在二氧化鈦奈米顆粒的幫助下,二氧化錫奈米線的光電流響應能夠增強50%。其主要機制可歸因於二材料間因導、價帶位置不同,所形成的第二型異質結構引起的載子分離過程。在第二型異質結構下,在二氧化鈦奈米顆粒內因光激發而產生的自由電子將遷移至二氧化錫奈米線的導帶上。同時二氧化錫奈米線內光激發產生的電洞將漂移至二氧化鈦奈米顆粒的價帶上。電子電洞對的分離不只降低他們的再結合機率同時遷移至二氧化錫奈米線導帶上的自由電子會大幅增加其光電流響應。此一研究顯示二氧化錫可用來製備高靈敏度的光偵測器。

Individual SnO2 nanowire-based device has been fabricated by the gold microwire mask method and enhancement of photon-sensing property through combining single SnO2 nanowire with TiO2 nanoparticles have been investigated. It is found that the sensitivity of photoresponse of SnO2 nanowire can be enhanced by up to 50%. The underlying mechanism can be attributed to the charge separation process taking place between TiO2 nanoparticles and SnO2 nanowire due to Type II band alignment. The charge separation of photoinduced electrons and holes greatly reduces their recombination probability and accordingly enhances the photoconductivity of TiO2-decorated SnO2 nanowire. The result implies that SnO2 nanostructure can serve as a highly sensitive photodetector.

誌謝………………………………………………………………………I
摘要……………………………………………………………………...II
Abstract…………………………………………………………...…...III
Contents…………………………………………………………..........IV
List of Figures………………………………………………………….VI
1. Introduction……………………………...…………………………...1
References……………………………………………………………………….…4
2. Theoretical Background …………………………………………….6
2.1 Principle of Photoconduction in Metal Oxide 1D Nanostructure………….…..6
2.2 Semiconductor Heterostructure………………………………………………...8
2.3 Ohmic Contact Between Metal and Semiconductor………………………..…10
References……………………………………………............................................12
3. Experimental Techniques………………………………………......13
3.1 Vapor-Liquid-Solid Growth Mechanism (VLS)………………………............13
3.1.1 Fabrication of SnO2 nanowires……………………….……........……….....15
3.1.2 Fabrication of Single SnO2 Nanowire Device…………………….……..….16
3.2 Scanning Electron Microscopy (SEM)…………..………………......……..…18
3.3 X-ray Diffraction (XRD)…………………………………..………….……....21
3.4 DC Sputtering Deposition…………………….…………………..……......….23
3.5 Thermal Evaporation…………………………………………………….…....25
3.6 Current-Voltage (I-V) Measurement……………………………………...…..27
References…………….…………………………………………………………...28
4. Enhancement of Photoconductivity Based on Single SnO2
Nanowire Decorated with TiO2 Nanoparticles.................................29
4.1 Introduction………………………………..……………………………..…..29
4.2 Experiment Details……………………………………………………....…...31
4.3 Results and Discussion……………………………………………......……...32
4.4 Summary……………………………………………………………………...43
References……………………………………………………..………………....44
5. Conclusion…………………………………………………………..47


chapter 1
1.Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001).
2.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).
3.Y. Cui, Q. Wei, H. Park and C. M. Lieber, Science 293, 1289 (1999).
4.T. J. Lin, H. L. Chen, Y. F. Chen and S. Cheng, Appl. Phys. Lett. 93, 223903 (2008).
5.M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. D. Yang, Nat. Mater. 4, 455 (2005).
6.S. Mubeen and M. Moskovits, Adv. Mater. 23, 2306 (2011).
7.D. C. Look, B. Claflin, Ya. I. Alivov and S. J. Park, Phys. Status Solidi A 201, 2203 (2004).
8.Z. L. Wang and J. Song, Science 312, 242 (2006).
9.E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan and Z. L. Wang, Appl. Phys. Lett. 81, 1869 (2002).
10.C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, Nano Lett. 7, 1003 (2007).
11.H. Kind, H. Q. Yang, B. Messer, M. Law and P. D. Yang, Adv. Mater. 14, 158 (2002).
12.Z. Q. Liu, D.H. Zhang, S. Han, C.Li, T. Tan, W. Jin, X. L. Liu, B. Lei and C. W. Zhou, Adv. Mater. 15, 1754 (2003).
13.S. Mathur, S. Barth, H. Shen, J. C. Pyun and U. Werner, Small 1, 713 (2005).
14.J. B. K. Law and J. T. L. Thong, Appl. Phys. Lett. 88, 133114 (2006).
15.Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang and B. Li, Appl. Phys. Lett. 93, 163501 (2008).
16.T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, and X. L. Du, Appl. Phys. Lett. 94, 113508 (2009).
17.L. F. Hu, J. Yan, M. Y. Liao, L. M. Wu and X. S. Fang, Small 8, 1012 (2011).
18.X. H. Chen and M. Moskovits, Nano Lett. 7, 807 (2007).
19.A. Chowdhuri, P. Sharma, V. Gupta, K. Sreenivas and K.V. Rao, J. Appl. Phys. 92, 2172 (2002).
20.C. H. Lin, T. T. Chen and Y. F. Chen, Opt. Exp. 16, 16916 (2008).
21.M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater. 4, 455 (2005).
22.D. S. Ginger and N. C. Greenham, J. Appl. Phys. 87, 1361 (2000).
23.H. Sakaki, Japan. J. Apl. Phys. 19, L735 (1980).
24.B. Tan and Y. Wu, J. Phys. Chem. B 110, 15932 (2006).
25. C. H. Ku and J. J. Wu, Nanotechnology 18, 505706 (2007).

chapter 2
1.C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, Nano Lett. 7, 1003 (2007).
2.H. Kind, H. Yang, B. Messer, M. Law and P. Yang, Adv. Mater. 14, 158 (2002).
3.J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez and J. R. Morante, Nanotechnology 19, 465501 (2008).
4.C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen and L. C. Chen, Appl. Phys. Lett. 93, 112115 (2008).
5.R. K. Anderson, Solid State Electronics 5, 341 (1962).
6.J. Bardeen, Phys. Rev. 71, 717 (1947).
7.M. Chen, X. Xia, Z. Wang, Y. Li, J. Li and C. Gu, Microelectronic Engineering 85, 1379 (2008).
8.O. Bierwagen, M. E. White, M. Y. Tsai, T. Nagata and J. S. Speck, Applied Physics Express 2, 106502 (2009).

chapter 3
1.Q. X. Liu, C.X. Wang, N. S. Xu and G. W. Yang, Phys. Rev. B 72, 085417 (2005).
2.J. R. Morber, Y. Ding, M. S. Haluska, Y. Li, J. P. Liu, Z. L. Wang and R. L. Snyder, J. Phys. Chem. B 110, 21672 (2006).
3.R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
4.P. X. Gao and Z. L. Wang, J. Phys. Chem. B 108, 7534 (2004).
5.Y. Q. Chen, X. F. Cui and K. Zhang, Chem. Phys. Lett. 369, 16 (2003).
6.J. Zhang, F. H. Jiang, Y. D. Yang and J. P. Li, J. Phys. Chem. B 109, 13143 (2005).
7.Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165 (2001).
8.J. Sun, Q. Tang, A. Lu, X. Jiang and Q. Wan, Nanotechnology 20, 255202 (2009).

chapter 4
1.A. Kolmakov, and M. Moskovits, Annu. Rev. Mater. Res. 34, 151 (2004).
2.J. G. Lu, P. Chang, and Z. Fan, Materials Science and Engineering R 52, 49 (2006).
3.Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001).
4.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).
5.Y. Cui, Q. Wei, H Park and C. M. Lieber, Science 293, 1289 (1999).
6.C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han and C. Zhou, Appl. Phys. Lett. 82, 1613 (2003).
7.E. Comini, G. Faglia, G. Sberveglieri, Z. Pan and Z. L. Wang, Appl. Phys. Lett. 81, 1869 (2002).
8.C. M. Lieber, and Z. L. Wang, MRS Bull 32, 99 (2007).
9.Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H and Wang D, Nano Lett. 7, 1003 (2007).
10.H. Kind, H. Q. Yang, B. Messer, M. Law and P. D. Yang, Adv. Mater. 14, 158 (2002).
11.Z. Q. Liu, D.H. Zhang, S. Han, C.Li, T. Tan, W. Jin, X. L. Liu, B. Lei and C. W. Zhou, Adv. Mater. 15, 1754 (2003).
12.S. Mathur, S. Barth, H. Shen, J. C. Pyun and U. Werner, Small 1, 713 (2005).
13.H. Xue, X. Kong, Z. Liu, C. Liu, J. Zhou, and W. Chen, Appl. Phys. Lett. 90, 201118 (2007).
14.J. P. Zou, Q. Zhang, K. Huang and N. Marzari, J. Phys. Chem. C 114, 10725 (2010).
15.L. F. Hu, J. Yan, M. Y. Liao, L. M. Wu and X. S. Fang, Small 8, 1012 (2011).
16.X. H. Chen and M. Moskovits, Nano Lett. 7, 807 (2007).
17.A. Chowdhuri, P. Sharma, V. Gupta, K. Sreenivas and K.V. Rao, J. Appl. Phys. 92, 2172 (2002).
18.M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P Yang, Nat. Mater. 4, 455 (2005).
19.D. S. Ginger and N. C. Greenham, J. Appl. Phys. 87, 1361 (2000).
20.H. Sakaki, Japan. J. Apl. Phys. 19 L735 (1980).
21.B. Tan and Y. Wu, J. Phys. Chem. B 110, 15932 (2006).
22.C. H. Ku and J. J. Wu, Nanotechnology 18, 505706 (2007).
23.J. Sun, Q. Tang, A. Lu, X. Jiang and Q. Wan, Nanotechnology 20, 255202 (2009).
24.H. Y. Lin, Y. Y. Chou, C. L. Cheng, and Y. F. Chen, Opt. Exp. 15, 13832 (2007).
25.J. A. Garrido, E. Monroy, I. Izpura and E. Munoz, Semicond. Sci. Technol. 13, 563 (1998).
26.M. Grätzel, Nature 414, 338 (2001).
27.Y. Xu and M. A. A. Schoonen, American Mineralogist 85, 543 (2000).
28.S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, Adv. Funct. Mater. 18, 2411 (2008).
29.C. H. Wang, C. L. Shao, X. T. Zhang and Y. C. Liu, Inorg. Chem. 48, 7661 (2009).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊