跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佩儀
研究生(外文):Pei-Yi Lin
論文名稱:數株乳酸桿菌細胞區分物抑制大腸癌細胞增生及抗細胞毒性研究
論文名稱(外文):Study on the Antiproliferation of Colon Cancer Cells and Anticytotoxicity of Various Cell Fractions from Lactobacillus spp.
指導教授:游若篍
指導教授(外文):Roch-Chui Yu
口試委員:周正俊顏聰榮蔡國珍潘崇良丘志威
口試日期:2011-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:90
中文關鍵詞:Lactobacillus彗星電泳抗細胞毒性抗癌細胞增生
外文關鍵詞:LactobacillusComet assayanticytotoxicantiproliferation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
 大腸結腸癌為台灣惡性腫瘤十大死因之一,相關研究指出,乳酸菌可以和致突變物質進行結合的作用,降低致突變物質對腸道細胞組織受到致癌物的傷害,具有抗氧化活性、抗致突變性和抗腫瘤等功能。因此本研究利用三株乳酸菌Lactobacillus casei 01、L. plantarum、L. acidophillus為材料,進行細胞試驗,結果顯示乳酸菌之不同細胞區分物不會對人類腸道上皮細胞 Int-407 生長造成影響。抑制癌細胞增生的實驗結果,乳酸菌之不同區分物經過48小時作用之後,可顯著的下降大腸癌細胞HT-29 及 Caco-2之存活率,最低達 33.0% 與54.8%,為 L. casei 01 與 L. acidophilus之熱致死細胞作用結果。此外,利用彗星電泳法 (Comet assay) 評估樣品降低化學致突變劑 4NQO 誘導 Int-407產生細胞損傷及基因毒性之效果。進一步利用分段式預反應,探討其抗細胞毒性機制。最後以化學抗氧化方法檢測包括螯合亞鐵離子能力以及DPPH自由基捕捉能力。三株乳酸菌之胞內萃取液皆可顯著降低4NQO誘導人體腸道細胞Int-407株之DNA損傷,細胞壁部分則是 L. casei 01,損傷分數由172.2下降至71.7最為顯著。並發現乳酸菌胞內液其抗細胞毒性之機制主要為生物抗細胞毒性(Bioanticytotoxic effect) 以及去細胞毒性 (Descytotoxic) 作用。化學抗氧化試驗中,與亞鐵離子螯合能力最佳的是 L. plantarum,其熱致死細胞、粗細胞壁與之螯合力分別為 51.8、55.6 及 56.8%。對DPPH之清除能力,當三株乳酸菌之菌數為109 CFU/mL時,其熱致死細胞部位對於清除 DPPH 自由基之能力達33.7%-46.4%。

Colon cancer is a major cause of death in Taiwan. Recently, studies on lactic acid bacteria have indicated that they possess antioxidative, antimutagenic, and antitumor activities. In this study, the cell fractions (heat-killed cells, crude cell walls and intracellular extracts) of Lactobacillus acidophilus, L. casei 01, and L. plantarum were studied for their effects on the growth of human intestinal epithelial cells, intestine 407 and antiproliferation of human colon cancer cells, HT-29 and Caco-2. The viability of intestine 407 cells was not affected by all cell fractions (p<0.05). And the results showed that, after treated with 48h, all the cell fractions of three Lactobacillus spp. could reduce the cell viability in HT-29 and Caco-2 cells(p<0.05). The lowest in HT-29 and Caco-2 cells are 33.0% and 54.8%, after treated with the heat-killed cells of L. casei 01 and L. acidophilus BCRC 14079. Furthermore, the prevention of 4NQO-induced DNA damage on intestine 407 cells was studied as by comet assay. The possible anticytotoxic mechanisms of cell fractions were also investigated by section-preincubation test. The intracellular extract of three Lactobacillus spp. decreased the 4NQO-induced DNA damage on Int-407 (p<0.05). As in the part of crude cell wall, L. casei 01 has the most significantly effect, reduce the DNA damage score from 172.2 to 78.1. And the primary mechanism of intracellular extract of three Lactobacillus spp. were bioanticytotoxic effect and descytotoxic effect. In addition, all of the three Lactobacillus spp. have antioxidative abilities, the cell fractions of L. plantarum, has the chelating effects of ferrous ions between 51.8-56.8%, was the most significantly one. The scavenging effects of 2-Dipheny-1-picryl-hydrazyl (DPPH), showed the heat-killed cells of 109 CFU/mL Lactobacillus spp. were the most effective one, scavenged from 33.7-46.4%.

謝誌……………...……...…………...........……………………………….......……………...i
中文摘要…...……...………………………............……………………………….........ii
英文摘要…...……...……………………............…………………………………........iii
目錄…...……...………………………………….........……………………................v
圖目錄…...……...………………………………………............………………...........ix
表目錄…...……...………………………………………………............………............x
壹、前言…...……...………………………………….........…………………….............1
貳、文獻整理…...……...………………………………….........……………………..........2
一、益生菌…...……...………………………………….........……………………...........2
(一) 乳酸菌分類…...……...………………………………….........…………………….......2
(二)乳酸菌對健康之益處…...……...………………………………….........…………………….3
(三)乳酸菌之抗氧化活性…...……...………………………………….........……………………11
(四)乳酸菌之抗致突變性…...……...………………………………….........……………………12
二、氧化壓力、活性氧與自由基…...……...………………………………….........…………12
(一) 自由基的氧化傷害…...……...………………………………….........…………………….14
(二) 抗氧化系統…...……...………………………………….........……………………......17
(三) 抗氧化酵素…...……...………………………………….........……………………......19
(四) 抗氧化物質…...……...………………………………….........……………………......20
(五) 氧化性 DNA 傷害與致癌作用…...……...………………………………….........…22
三、致突變物…...……...………………………………….........…………………….........22
(一) 膳食中致突變物來源…...……...………………………………….........…………………22
(二) 致突變物與抗致突變物…...……...………………………………….........………………25
(三) 抗致突變之機制…...……...………………………………….........……………………...28
四、大腸癌…...……...………………………………….........……………………..........29
(一) 誘發大腸癌之因子…...……...………………………………….........………………29
(二) 大腸癌與乳酸菌之關聯性…...……...…………………………………..........29
參、材料與方法…...……...………………………………….........…………………….......32
一、實驗架構…...……...………………………………….........…………………….........32
二、實驗材料…...……...………………………………….........…………………….........34
(一) 試驗菌株…...……...………………………………….........…………………….......34
(二) 試驗細胞株…...……...………………………………….........……………………......34
(三) 培養基…...……...………………………………….........…………………….........34
(四) 藥品 …...……...………………………………….........……………………...........35
(五) 儀器 …...……...………………………………….........……………………...........36
三、試驗方法…...……...………………………………….........…………………….........37
(一) 菌株之活化與保存…...……...………………………………….........…………………….37
(二) 乳酸菌菌數的計數…...……...………………………………….........…………………….37
(三) 乳酸菌之熱致死細胞、粗細胞壁與胞內液之製備…...……...…………………………38
(四) 細胞株之活化培養、繼代、計數與保存…...……...………………………….....39
(五) MTT細胞存活率毒性試驗…...……...…………………………................39
(六) 乳酸菌細胞區分物抑制人類結腸癌細胞株HT-29 及 Caco-2增生之試驗…...……...……………………………...……...……………………………...……...………………………40
(七)乳酸菌細胞區分物抑制人類腸道細胞Int-407 存活率之影響 …...……...…40
(八)乳酸菌細胞區分物抑制4NQO對誘導Int-407 細胞毒性試驗 …...……...…41
(九) 彗星試驗 (Comet assay)…...……...……………………………...……...…………41
(十) 乳酸菌細胞區分物抑制 4NQO 對 Int-407 細胞毒性機制之探討…...…43
(十一) 乳酸菌抗氧化能力之測定…...……...……………………………...……...……………44
(十二) 統計分析…...……...……………………………...……...………………………….......45
肆、結果與討論…...……...……………………………...……...……………………………...……..45
一、乳酸菌細胞區分物對人類結腸癌細胞株HT-29之抑制效果…...……...………45
二、乳酸菌細胞區分物人類結腸癌細胞株Caco-2之抑制效果…...……...……………49
三、乳酸菌細胞區分物對人類腸道上皮細胞 Int-407之毒性試驗…...……...……52
四、乳酸菌細胞區分物抑制 4NQO 誘導之細胞毒性…...……...…………………………54
五、乳酸菌細胞區分物抑制 4NQO 誘導之基因毒性…...……...…………………………56
六、乳酸菌細胞區分物抑制 4NQO 對 Int-407 細胞毒性機制之探討…...…….61
(一) 乳酸菌的去細胞毒性作用 (Descytotoxic effects)…...……...61
(二) 乳酸菌的阻擋作用 (Blocking effects)…...……...………………………63
(三) 乳酸菌的生物抗細胞毒性作用 (Bioanticytotoxic effects) …...……...……………………………...……...……………………………...……...…………………………65
七、乳酸菌細胞區分物之抗氧化活性…...……...……………………………...……...…………67
(一) 乳酸菌之熱致死細胞、粗細胞壁與胞內液對亞鐵離子之螯合能力…...67
(二) 乳酸菌之熱致死細胞、粗細胞壁與胞內液對DPPH之清除能力 …...……...…69
伍、結論…...……...……………………………...……...……………………………...……...…………71
陸、參考文獻…...……...……………………………...……...……………………………...……...…72
附錄…...……...……………………………...……...……………………………...……...…………………85
附圖一、L. acidophilus BCRC 14079 之熱致死細胞、粗細胞壁與胞內液對4NQO誘導細胞株 DNA 損傷之顯微鏡照片..........................85

附圖二、L. casei 01 之熱致死細胞、粗細胞壁與胞內液對4NQO誘導細胞株 DNA 損傷之顯微鏡照片........................…86
附圖三、L. plantarum 之熱致死細胞、粗細胞壁與胞內液對4NQO誘導細胞株 DNA 損傷之顯微鏡照片..........................….87
附表一、乳酸菌之熱致死細胞、粗細胞壁與胞內液對4NQO誘導 Int-407細胞毒性之去細胞毒性效應……….......................…………………….………....………88
附表二、乳酸菌之熱致死細胞、粗細胞壁與胞內液對4NQO誘導 Int-407細胞毒性之去阻斷效應…………………………………………….………........................89
附表三、乳酸菌之熱致死細胞、粗細胞壁與胞內液對4NQO誘導 Int-407細胞毒性之生物抗細胞毒性效應…………..........................90


廖啟成。乳酸菌之分類及應用。食品工業 1998, 30(2), 1-10.
朱芳瑢。2008。數株益生菌及其發酵乳抑制大腸癌細胞增生及4NQO誘導Int-407基因毒性之研究。國立台灣大學食品科技研究所碩士論文。台北。台灣。
許雅鈞。2004。雙叉桿菌胞內物對活性氧之抗致突變性與抗氧化性。國立台灣大學食品科技研究所碩士論文。台北。台灣。
行政院衛生署。2008。歷年癌症主要死亡原因統計。行政院衛生署。台北。台灣。
黃崇真. 腸道微生物與益生菌. 食品工業 2004, 36, 4-15.
Ahotupa, M.; Saxelin, M.; Korpela, R. Antioxidative properties of Lactobacillus GG. Nutr. Today Suppl. 1996, 31, 51S-52S.
Ames, B. N. Dietary carcinogenesis and anticarcinogens. Science 1983, 221, 1256-1264.
Anderson, D.; Yu, T. W.; Phillips, B. J.; Schmezer, P. The effects of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the Comet assay. Mutat. Res. 1994, 307, 267-271.
Archibald, F. S.; Fridovich, I. Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J. Bacteriol. 1981, 146, 828-936.
Arunachalam, K. D. Role of Bifidobacteria in nutrition, medicine and technology. Nutr. Res. 1999, 19, 1559-1597.
Axelsson, L., Lactic acid bacteria: classific ation and physiology. Marcel Dekker Inc: New York, 2004; p 1-66.
Ballongue, J.; Schumann, C.; Quignon, P. Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scand J. Gastroenterol Suppl. 1997, 222, 41-44.
Beckman, K. B.; Ames, B. N. The free radical theory of aging matures. Physiol Rev 1998, 78, 547–581.
Beyer, R. E. In: The role of ascorbate in antioxidant protection of biomembranes: interaction with vitamin E and coenzyme Q, eds. 1994.
Boutron, M. C.; Faivre, J.; Marteau, P.; Couillault, C.; Senesse, P.; Quipourt, V. Calcium, phosphorus, vitamin D, dairy products and colorectal carcinogenesis: a French case-control study. . Br. J. Cancer 1996, 74, 145-151.
Brady, L.; Gallaher, D.; Busta, F. The role of probiotic cultures in the prevention of colon cancer. J. Nutr 2000, 130, 410–414.
Bronzetti, G. Antimutagens in food. Trends Food Sci. Tech. 1994, 5, 390-395.
Burlinson, B.; Tice, R.; Speit, G.; Agurell, E.; Brendler-Schwaab, S.; Collins, A.; Escobar, P.; Honma, M.; Kumaravel, T.; Nakajima, M.; Sasaki, Y.; Thybaud, V.; Uno, Y.; Vasquez, M.; Hartmann, A. Fourth International Workgroup on Genotoxicity testing: results of the in vivo Comet assay workgroup. Mutat. Res. 2007, 627, 31-35.
Burton, G. W.; Joyce, A.; Ingold, K. U. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch. Biochem. Biophys. 1983, 221, 281-90.
Cacciuttolo, M. A.; Trinh, L.; Lumpkin, J. A.; Rao, G. Hyperoxia induces DNA damage in mammalian cells. Free Radical Biol. Med. 1993, 14, 267-276.
Caldini, G.; Trotta, F.; Villarini, M.; Moretti, M.; Pasquini, R.; Scassellati-Sforzolini, G.; Cenci, G. Screening of potential lactobacilli antigenotoxicity by microbial and mammalian cell-based tests. Int. J. Food Microbiol. 2005, 102, 37-47.
Camilleri, M. Probiotics and irritable bowel syndrome:rationale, putative mechanisms, and evidence of clinical efficacy. J. Clin. Gastroenterol. 2006, 40, 264–269.
Cerutti, P. A. Prooxidant states and tumor promotion. Science 1985, 227, 375-381.
Chen, H. Y.; Yen, G. C. Possible mechanisms of antimutagens by various teas as judged by their effects on mutagenesis by 2-amino-3-methylimidazo [4,5-f] quinoline and benzo [a]pyrene. Mutat. Res./Gen. Tox. En. 1997, 393, 115-122.
Cheng, K. C.; Cahill, D. S.; Kasai, H.; Nishimura, S.; Loeb, L. A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A-→C substitutions. J. Biol. Chem. 1992, 267.
Chmielewska, A., Szajewska, H. Systematic review of randomised controlled trials: Probiotics for functional constipation. World J. Gastroenterol. 2010, 16, 69–75.
Choi, S. S.; Kim, Y.; Han, K. S.; You, S.; Oh, S.; Kim, S. H. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol. 2006, 42, 452-458.
Crittenden, R. G.; Martinez, N. R.; Playne, M. J. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int. J. Food Microbiol. 2003, 80, 217-222.
Cross, M. L.; Stevenson, L. M.; Gill, H. S. Anti-allergy properties of fermented foods: an important immunoregulatory mechanism of lactic acid bacteria? Int. Immunopharmacol. 2001, 1, 891-901.
de Kok, T. M. C. M.; van Maanen, J. M. S. Evaluation of fecal mutagenicity and colorectal cancer risk. Mutat. Res./Rev. Mutat. 2000, 463, 53-101.
De Vos, W. M. Metabolic engineering of sugar catabolism in lactic acid bacteria. Anton. Leeuw.Int. J. G. 1996, 70, 223-242.
Denholm, J.; Horne, K.; McMahon, J.; Grayson, M.; Johnson, P. Yoghurt consumption and damaged colonic mucosa: a case of Lactococcus lactis liver abscess in an immunocompetent patient. Scand. J. Infect. Dis. 2006, 38, 739–741.
Dinis, T. C. P.; Madeira, V. M. C.; Almeida, L. M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of memvrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161-169.
Dogliotti, E. Mutational spectra: from model systems to cancer-related gene. Carcinogenesis 1996, 17, 2113-2118.
Dunne, C. Adaptation of bacteria to the intestinal niche: probiotics and gut disorder. Inflamm. Bowel. Dis. 2001, 7, 136–145.
Epe, B.; Hegler, J.; Wild, D. Identification of ultimate DNA damaging oxygen species. . Environ. Health. Perspect. 1990, 88, 111-115.
Eun-Ah, B.; Han, M. J.; Mi-Jeong, S.; Dong-Hyun, K. Purification of rotavirus infection-inhibitory protein from Bifidobacterium breve K-110. Korean Society Appl. Microbiol. 2002, 12, 553-556.
Ferguson, L. R. Antimutagens as cancer chemopreventive agents in the diet. Mutat. Res. 1994, 307, 395-410.
Ferguson, L. R.; Philpott, M.; Karunasinghe, N. Dietary cancer and prevention using antimutagens. Toxicology 2004, 198, 147-159.
Finkel, T.; Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239-247
Fronza, G.; Campomenosi, P.; Iannone, R.; Abbondandolo, A. The 4-nitroquinoline 1-oxide mutational spectrum in single stranded DNA is characterized by guanine to pyrimidine transversions. Nucleic Acids Res. 1992, 20, 1283-1287.
Fukushima, M.; Nakano, M. Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on cholesterol metabolism in rats fed on a fat- and cholesterol-enriched diet. Br. J. Nutr. 1996, 76.
Fukushima, Y.; Kawata, Y.; Hara, H.; Terada, A.; Mitsuoka, T. Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int. J. Food Microbiol. 1998, 42, 39-44.
Fuller, R., History and development of probiotics. Chapman & Hall: 1992; 1-8.
Gibson, G. R.; Wang, X. Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiol. Lett. 1994, 118, 121-127.
Gilliland, S. E. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 1991, 87, 175-188.
Gilliland, S. E.; Walker., D. K. Factors to condiser when selecting a dietary adjunct to produce a hypocholesteroleric effect in humans. J. Dairy Sci. 1990, 73, 905-911.
Guengerich, F. P. Reactions and significance of cytochrome P-450 enzymes. J. Biol. Chem. 1991, 226, 10019-10022.
Halliwell, B.; Murcia, M. A.; Chirico, S.; Aruoma, O. I. Free radicals and antioxidants in food and in vivo: what they do and how they work. Food Sci. Nutr. 1995, 35, 7-22.
Halliwell, Β.; Gutteridge, J. Μ. C. Role of free radicals and catalytic metal ions in human diseases: An overview. Methods Enzymol. 1990, 186,
1-86.
He, L.; Li, X.; Luo, H. S.; Rong, H.; J. Cai. Possible mechanism for the regulation of glucose on proliferation, inhibition and apoptosis of colon cancer cells induced by sodium butyrate. World J. Gastroenterol. 2007, 13, 4015–4018.
Hsieh, M. L.; Fang, S. W.; Yu, R. C.; Chou, C. C. Possible mechanisms of antimutagenicity in fermented soymilk prepared with a coculture of Streptococcus infantis and Bifidobacterium infantis. J. Food Prot. 2007, 70, 1025-1028.
Iwasaki, A.; Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 2004, 5, 987-995.
Kada, T.; Kaneko, K.; Matsuzaki, S.; Matsuzaki, T.; Hora, Y. Detection and chemical identification of natural bio-antimutagens: A case of the green tea factor. Mutat. Res./Fund. Mol. M. 1985, 150, 127-132. Kaizu, H.; Sasaki, M.; Nakajima, H.; Suzuki, Y. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 1993, 76, 2493–2499.
Kazzaz, J. A.; Xu, J.; Palaia, T. A.; Mantell, L.; Fein, A. M.; Horowitz, S. Cellular oxygen toxicity. J. Biol. Chem. 1996, 271, 15182-15186.
Kim, J. Y.; Woo, H. Y.; Kim, Y. S.; Lee, H. J. Screening for antiproliferative effects of cellular components from lactic acid bacteria against human cancer cell line. Biotechnol. Lett. 2002, 24, 1431-1436.
Kitts, D. D. An evaluation of the multiple effects of the antioxidant vitamins. Trends Food Sci. Tech. 1997, 8, 198-203.
Klaver, F. A. M.; Meer, R. V. D. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 1993, 59, 1120-1124.
Klenow, S.; Glei, M.; Haber, B.; Owen, R.; Pool-Zobel, B. L. Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells. Food Chem. Toxicol. 2008, 46, 1389-1397.
Kobayashi, S.; Ueda, K.; Komano, T. The effects of metal ions on the DNA damage induced by hydrogen peroxide. Agric. Biol. Chem. 1990, 54, 69-76.
Kojima, H.; Miwa, N.; Mori, M.; Osaki, M.; Konishi, H. Desmutagenic effect of oolong tea. J. Food Hyg. Soc. Jpn. 1989, 30, 233-239.
Korpela, R.; La hteenma ki, T.; Sievi, E.; Saxelin, M.; Vapaatalo, H. Lactobacillus rhamnosus GG shows antioxidative properties in vascular endothelial cell cultures. Milchwissenschaft 1997, 52, 503–505.
Kullisaar, T.; Songisepp, E.; Mikelsaar, M.; Zilmer, K.; Vihalemm, T.; Zilmer, M. Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenity in human subjects. . Br. J. Nutr. 2003, 90, 449–456.
Kullisaar, T.; Zilmer, M.; Mikelsaar, M.; Vihalemm, T.; Annuk, H.; Kairane, C.; Kilk, A. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 2002, 72, 215-224.
Lankaputhra, W. E. V.; Shah, N. P. Antimutagenic properties of probiotic bacteria and of organic acids. Mutat. Res./Fund. Mol. M. 1998, 397, 169-182.
Lidbeck, A.; Overvik, E.; Rafter, J.; Nord, C. E.; Gustafsson, J.-A. Effect of Lactobacillus acidophilus Supplements on Mutagen Excretion in Faeces and Urine in Humans. Microb. Ecol. Health Dis. 1992, 5,
59-67.
Lin, M. Y.; Yen, C. L. Antioxidative Ability of Lactic Acid Bacteria. J. Agric. Food Chem. 1999, 47, 1460-1466.
Liu, C. T.; Chu, F. J.; Chou, C. C.; Yu, R. C. Antiproliferative and anticytotoxic effects of cell fractions and exopolysaccharides from Lactobacillus casei 01. Mutat. Res./Gen. Tox. En. 2011, 721, 157-162.
Lo, P. R.; Yu, R. C.; Chou, C. C.; Tsai, Y. H. Antimutagenic activity of several probiotic bifidobacteria against Benzo[a]pyrene. J. Biosci. Bioeng. 2002, 94, 148-153.
Lomer, M. C. E.; Parkes, G. C.; Sanderson, J. D. Review article: lactose intolerance in clinical practice – myths and realities. Aliment. Pharm. Therap. 2008, 27, 93-103.
Majamaa, H.; Isolauri, E. Probiotics: a novel approach in the management of food allergy. . J. Allergy Clin. Immunol. 1997, 99, 179-185.
Mara, L. S.; Manuela, D. T.; Marina., M. Determination of peroxy radical-scavenging of lactic acid bacteria. Int. J. Food Microbiol. 2001, 64, 183-188.
Marklund, S. L.; Midander, J.; Westman, G. CuZn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in glutathione-deficient human fibroblasts. Biochimica et Biophysica Acta (BBA) - General Subjects 1984, 798, 302-305.
Marnett, L. J.; Burcham, P. C. Endogenous DNA adducts: potential and paradox. Chem. Res. Toxicol. 1993, 6, 771-785.
Meyer, A. S.; Isaksen, A. Application of enzymes as food antioxidants.
Trends Food Sci. Tech. 1995, 6, 300-304.
Miyamae, Y.; Yamamoto, M.; Sasaki, Y. F.; Kobayashi, H.; Igarashi-Soga, M.; Shimoi, K.; Hayashi, M. Evaluation of a tissue homogenization technique that isolated nuclei for the in vivo single cell gel electrophoresis (comet) assay: A collaborative study by five laboratories. Mutat. Res. 1998, 418, 131-140.
Nelson, D. L.; Cox, M. M., Lehninger Principles of Biochemistry. 4th ed.; Worth Publishers: United Kingdom, 2005; p 549-554.
Nowak-Wegrzyn, A. Future Approaches to Food Allergy. Pediatrics 2003, 111, 1672-1680.
O''Sullivan, M. G.; Thornton, G.; O''Sullivan, G. C.; Collins, J. K. Probiotic bacteria: myth or reality? Trends Food Sci. Tech. 1992, 3, 309-314.
Olive, P. L.; Banath, J. P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protocols 2006, 1, 23-29.
Ou, C. C.; Ko, J. L.; Lin, M. Y. Antioxidative effects of intracellular extracts of yogurt bacteria on lipid peroxidation and intestine 407 cells. J. Food Drug Anal. 2006, 14, 304-310.
Ouwehand, A.; Salminen, S.; Isolauri, E. Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 2002, 82, 279-289.
Oxman, T.; Shapira, M.; Diver, A.; Klein, R.; Avazov, N.; Rabinowitz, B. A new method of long-term preventive cardioprotection using Lactobacillus. . Am. J. Physiol. Heart Circ. Physiol. 2000, 278, 1717–1724.
Parvez, S.; Malik, K. A.; Ah Kang, S.; Kim, H. Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171-1185.
Perdigon, G.; Alvarez, S.; Rachid, M.; Aguero, G.; Gobbato, N. Immune System Stimulation by Probiotics. J. Dairy Sci. 1995, 78, 1597-1606.
Perdigon, G.; Valdez, J.; Rachid, M. Antitumour activity of yogurt: study of possible immune mechanisms. J. Dairy Res. 1998, 65, 129–138
Perdigon, G.; Vintint, E.; Alvarez, S.; Medina, M.; M.Medici. Study of the possible mechanism involved in the mucosalimmune system activation by lactic acid bacteria. J. Dairy Sci. 1999, 82, 1108-1114.
Pinto, M.; Appay, S.; Simon-Assmann, P.; Chevalier, G.; Dracopoli, N.; Fogh, J.; Zweibaum, A. Enterocytic differentiation of cultured human colon cancer cells by replacement of glucose bygasactose in the medium. Bio. Cell 1982, 44, 193-196.
Princen, H. M.; van Poppel, G.; Vogelezang, C.; Buytenhek, R.; Kok, F. J. Supplementation with vitamin E but not beta-carotene in vivo protects low density lipoprotein from lipid peroxidation in vitro. Effect of cigarette smoking. Arterioscler Thromb. 1992, 12, 554-562.
Reid, T. M.; Loeb, L. A. Effect of DNA repair enzymes on mutagenesis by oxygen free radicals. Mutat. Res. 1993, 289, 181-186.
Rolfe, R. D. The role of probiotic cultures in the control of gastrointestinal health. 2000, 130, 396S-402S.
Rose, R. C.; Bod, A. M. Biology of free radical scavengers: an evaluation of ascorbact. . FASEB J. 1993, 7, 1135-1142.
Rowland, I. R.; Rumney, C. J.; Coutts, J. T.; Lievense, L. C. Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. . Carcinogenesis 1998, 19, 281-285.
Ruiz-Laguna, J.; Ariza, R. R.; Prieto-Alamo, M.-J.; Boiteux, S.; Pueyo, C. Fpg protein protects Escherichia coli K-12from mutation induction by the carcinogen 4-nitroquinoline 1-oxide. Carcinogenesis 1994, 15, 425-429.
Saikali, J.; Picard, C.; Freitas, M.; Holt, P. Fermented milks, probiotic cultures, and colon cancer. Nutr. Cancer 2004, 49, 14-24.
Scolastici, C.; Alves de Lima, R. O.; Barbisan, L. F.; Ferreira, A. L. A.; Ribeiro, D. A.; Salvadori, D. M. F. Antigenotoxicity and antimutagenicity of lycopene in HepG2 cell line evaluated by the comet assay and micronucleus test. Toxicol. in Vitro 2008, 22, 510-514.
Shah, N. P. Functional cultures and health benefits. Int. Dairy J. 2007, 17, 1262-1277.
Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. . J. Agric. Food Chem. 1992, 40, 945-948. .
Siitonen, S.; Vapaatalo, H.; Salminen, S.; Gordin, A.; Saxelin, M.; Wikberg, R.; Kirkkola, A.-L. Effect of Lactobacillus GG Yoghurt in Prevention of Antibiotic Associated Diarrhoea. Ann. Med. 1990, 22, 57-59.
Simic, M. G. Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat. Res./Fund. Mol. M. 1988, 202, 377-386.
Sreekumar, O.; Hosono, A. The heterocyclic amine binding receptors of Lactobacillus gasseri cells. Mutat. Res./Fund. Mol. M. 1998, 421, 65-72.
Stadtman, E. R. Protein oxidation and aging. Science 1992, 257, 1220-1224.
Stadtman, E. R.; Oliver, C. N. Metal-catalyzed oxidation of proteins. Physiological consequence. . J. Biol. Chem. 1991, 266, 2005-2008.
Steller, H. Mechanisms and genes of cellular suicide. Science 1995, 267, 1445-1448.
Sual, R. L.; Ames, B. N. Background levels of DNA damage in the population. Basic. Life Sci. 1986, 38, 529-535.
Sugimura, T. Studies on environmental chemical carcinogenesis in Japan. Science 1986, 233, 312-318.
Surh, Y. J. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res. 1999, 428, 305-327.
Taffe, B. G.; Takahashi, N.; Kensler, N. W.; Mason, R. P. Generation of free radicals from organic hydroperoxide tumor promoters in isolated mouse keratinocytes. . J. Biol. Chem. 1987, 262, 12143–12149.
Tannock, G. W. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol. 1997, 15, 270-274.
Terahara, M.; Kurama, S.; Takemoto, N. Prevention by Lactic Acid Bacteria of the Oxidation of Human LDL. Biosci. Biotech. Bioch. 2001, 65, 1864-1868.
Therond, P.; Bonnefont-Rousselot, D.; Davit-Spraul, A.; Conti, M.; Legrand, A. Biomarkers of oxidative stress: an analytical approach. Curr. Opin. Clin. Nutr. 2000, 3, 373-384.
Urbanska, A. M.; Martoni, J. B. A. C.; Prakash, S. Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc(Min/+) mice. Dig. Dis. Sci. 2009, 54, 264–273.
Van de Water, J.; Keen, C.; Gershwin, M. The influence of chronic yogurt consumption on immunity. J. Nutr. 1999, 129, 1492s-1495s.
Vanderhoof, J.; Whitney, D.; DL, A. Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. J. Pediatr 1999, 135,
564-568.
Vesa, T. H., P. R. Marteau, F. B. Breat, M. C. Boutron-Ruault, and J. C. Rambaud. Raising milk energy content retards gastric emptying of lactose in lactose-intolerant humans with little effect on lactose digestion. J. Nutr. 1997, 127, 2316-2320.
Waters, M. D.; Brady, A. L.; Stack, H. F.; Brockman, H. E. Antimutagenicity profiles for some model compounds. Mut. Res. 1990, 238, 57-85.
Weerasooriya, V.; Rennie, M. J.; Anant, S.; Alpers, D. H.; Bruce W. Patterson; Klein, S. Dietary fiber decreases colonic epithelial cell proliferation and protein synthetic rates in human subjects. Am. J. Physiol. Endocrinol. Metab 2006, 290, E1104-1108.
Willcox, J. K.; Ash, S. L.; Catignani, G. L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275-295.
Wolff, S. P.; Dean, R. T. Glucose autooxidation and protein modification. Biochem. J. 1987, 245, 243-250.
Wollowski, I.; Rechkemmer, G.; Pool-Zobel, B. L. Protective role of probiotics and prebiotics in colon cancer. Am. J. Clin. Nutr. 2001, 73, 451-455.
Yano, T.;Takahashi, S.; Ichikawa, T. Active oxygen generated in the process of carcinogen metabolism can induce oxidative damage in nuclei. Res. Commun. Mol. Pathol. Pharmacol. 1995, 87, 367-370.
Yen, G.-C.; Chiang, H. C.; Wu, C. H.; Yeh, C. T. The protective effects of Aspergillus candidus metabolites against hydrogen peroxide-induced oxidative damage to Int 407 cells. Food Chem. Toxicol. 2003, 41, 1561-1567.
Zommara, M.; Tachibana, M.; Sakono, M.; Suzuki, Y.; Oda, T.; Hashiba, H.; Imaizumi, K. Whey from cultured skim milk decreases serum cholestrols and increases antioxidant enzymes in liver and red blood cells in tats. Nutr. Res. 16, 1996, 293-302.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top