跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王晨帆
研究生(外文):Cheng-Fan Wang
論文名稱:以環境敏感型高分子:幾丁聚醣與聚(氮-異丙基丙烯醯胺)製備奈米顆粒於藥物釋放的研究
論文名稱(外文):Studies on Drug Release of Nanoparticles Synthesized with Stimuli-Responsive Polymers: Chitosan and PNIPAAm
指導教授:邱文英邱文英引用關係
口試委員:董崇民李佳芬呂幸江
口試日期:2011-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:99
中文關鍵詞:幾丁聚醣自組裝氮-異丙基丙烯醯胺溫度敏感藥物控制釋放
外文關鍵詞:stimuli-responsivechitosanself-assemblyN-isopropylacrylamidedrug controlled release
相關次數:
  • 被引用被引用:2
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用環境敏感型高分子製備奈米顆粒並應用於藥物釋放。系統架構是利用酸鹼敏感型天然高分子-幾丁聚醣,在醋酸水溶液中進行自組裝,形成幾丁聚醣/醋酸錯合微胞。接續在微胞中加入氮-異丙基丙烯醯胺單體,以過硫酸鉀在高溫下起始反應,由於生成的聚(氮-異丙基丙烯醯胺)為溫度敏感型高分子,當反應溫度高於其最低臨界溶解溫度時,高分子鏈產生疏水性而縮進微胞中,最後交聯外層幾丁聚醣,完成[幾丁聚醣/醋酸]-聚(氮-異丙基丙烯醯胺)奈米顆粒製備。
實驗的第一部分討論幾丁聚醣/醋酸微胞的成形條件、形態觀察與粒徑分析。首先使用螢光光譜儀並以芘做為疏水探針,測量幾丁聚醣/醋酸之臨界微胞濃度,討論醋酸濃度與氮-異丙基丙烯醯胺單體,對於臨界微胞濃度的影響。接續使用穿透式電子顯微鏡與動態粒徑分析儀研究微胞的形態與粒徑。
實驗的第二部分為[幾丁聚醣/醋酸]-聚(氮-異丙基丙烯醯胺)奈米顆粒的製程研究。藉由調控單體進料量、交聯劑進料量、交聯溫度、反應溫度等參數討論對於顆粒形態、粒徑、界面電位的影響。顆粒溫感性質的測試是使用紫外光-可見光分光光譜儀,量測該顆粒之最低臨界溶解溫度;並利用動態粒徑分析儀,計算顆粒在升溫前後粒徑的收縮比率,並測試是否具有溫感可逆性。
實驗最後的部分為[幾丁聚醣/醋酸]-聚(氮-異丙基丙烯醯胺)奈米顆粒在藥物釋放的應用。模擬藥物選用鹽酸四環素,控制載藥環境進行包覆96小時,接續以離心的方式分離含藥顆粒,並透過上清液的未包覆藥物量推算藥物於顆粒含量及藥物包覆效率,同時討論初始載藥量對於包覆的影響。將含藥顆粒分散在不同環境(酸鹼值、溫度、鹽類濃度、酵素、自由基)的生理食鹽水中,探討各個變因對於累積釋放比率的影響,藉以了解顆粒對於藥物控制釋放的能力。


In this research, the stimuli-responsive polymers: chitosan(CS) and poly(N-isopropylacrylamide)(PNIPAAm) were used to synthesize the nanoparticles as a drug carrier. The amount of pH-sensitive polymer, chitosan, was adjusted to a proper molar ratio with acetic acid(HAc) to form CS/HAc micelles by self-assembly. Next, NIPAAm was introduced into the system and initialized by potassium persulfate(KPS) at high temperature which was higher than Lower Critical Concentration Temperature(LCST) of PNIPAAm; therefore, PNIPAAm polymer chain would become hydrophobic and shrink into micelles. The [CS/HAc]-PNIPAAm particles were eventually completed by cross-linking the the out-layer chitosan.

The first part of this research was focused on the formation conditions of CS/HAc micelles, including the measurements of Critical Micellization Concentration(CMC), morphologies, and size distribution. CMC was measured by fluorescence spectrometer and pyrene was used as a hydrophobic probe. The effect of the concentration of acetic acid and presence of NIPAAm were studied. The observation of morphologies and size distribution were obtained with transmission electron microscopy(TEM) and dynamic light scattering(DLS), respectively.

The second part was the synthesis of [CS/HAc]-PNIPAAm nanoparticle. The morphology, particle size distribution, and zeta-potential of the nanoparticles were discussed by manipulate several parameters such as concentration of NIPAAm and cross-linking agent, cross-linking temperature, and polymerization temperature. The thermo-sensitivity and LCST of particles were tested by UV-Vis spectrophotometer. Dynamic light scattering technique was also applied to examine the particle size-reversible ability.

Finally, Doxycycline Hyclate was chosen as stimuli-drug and the drug-loaded particles were prepared under stable environmental conditions. After loading drug for 96hrs, the drug-loaded particles and the rest of stimuli-drug solution were separated via centrifugation process. The drug-loading content and the encapsulation efficiency were calculated via measuring the drug content in the upper phase of centrifugate. Furthermore, effect of initial drug-loading concentration on the encapsulation efficiency was discussed. Drug-loaded particles were dispersed in normal saline which was controlled in different conditions such as temperature, pH, concentration of salt, and the presence of enzyme and free radical. The release properties of drug-loaded particles in aforementioned conditions were studied.


論文口試委員會審定書 i
致謝 ii
中文摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1前言 1
1-2研究目的 1
第二章 文獻回顧 2
2-1環境敏感型高分子材料簡介與應用 2
2-1-1環境敏感型高分子材料定義與分類 2
2-1-2溫度敏感型高分子材料簡介 3
2-1-3酸鹼(pH)敏感型高分子材料簡介 9
2-1-4其他環境敏感型高分子材料簡介 13
2-2 奈米顆粒合成技術與未來發展趨勢 15
2-2-1 奈米顆粒合成技術之演進 15
2-2-2 奈米顆粒之未來發展趨勢 30
2-3 藥物傳輸載體與控制釋放系統簡介 33
2-3-1藥物傳輸系統與藥物控制釋放原理 33
2-3-2藥物控制釋放傳輸系統 35
第三章 實驗方法 43
3-1實驗藥品 43
3-2實驗儀器 47
3-3實驗步驟 49
3-3-1實驗流程圖 49
3-3-2幾丁聚醣/醋酸微胞 50
3-3-2-1臨界微胞濃度測試 50
3-3-2-2幾丁聚醣/醋酸微胞粒徑與表面電位分析 51
3-3-2-3幾丁聚醣/醋酸微胞形態觀察 52
3-3-3 [幾丁聚醣/醋酸]-聚(氮-異丙基丙烯醯胺)奈米顆粒 53
3-3-3-1合成方法 53
3-3-3-2最低臨界溶解溫度測試及轉化率分析 54
3-3-3-3奈米顆粒粒徑與表面電位分析 55
3-3-3-4奈米顆粒形態觀察 55
3-3-4含藥奈米顆粒製備及藥物釋放實驗 56
第四章 結果與討論 58
4-1幾丁聚醣/醋酸微胞 58
4-1-1微胞成形機制 58
4-1-2臨界微胞濃度分析 58
4-1-2微胞形態觀察及粒徑分析 59
4-2 [幾丁聚醣/醋酸]-聚(氮-異丙基丙烯醯胺)奈米顆粒 60
4-2-1顆粒合成機制 60
4-2-2氮-異丙基丙烯醯胺進料量的影響 60
4-2-3交聯劑的影響 62
4-2-4聚合溫度的影響 64
4-2-5奈米顆粒溫感性質測試 64
4-3含藥奈米顆粒製備及藥物釋放實驗 65
4-3-1含藥奈米顆粒製備 65
4-3-2藥物釋放實驗 65
4-3-2-1 溫度與酸鹼值對奈米顆粒藥物釋放的影響 65
4-3-2-2 藥物進料量對奈米顆粒藥物釋放的影響 67
4-3-2-3 鹽類濃度對奈米顆粒藥物釋放的影響 67
4-3-2-4 分解幾丁聚醣對奈米顆粒藥物釋放的影響 68
第五章 結論 88
參考文獻 90


1.Gil, E.S. and S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004. 29(12): p. 1173-1222.
2.Okano, T., Biorelated polymers and gels : controlled release and applications in biomedical engineering. Series in polymers, interfaces, and biomaterials. 1998, San Diego: Academic Press. xvi, 257 p.
3.Kikuchi, A. and T. Okano, Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Progress in Polymer Science, 2002. 27(6): p. 1165-1193.
4.Hoffman, A.S., et al., Really smart bioconjugates of smart polymers and receptor proteins. Journal of Biomedical Materials Research, 2000. 52(4): p. 577-586.
5.Jeong, B. and A. Gutowska, Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends in Biotechnology, 2002. 20(7): p. 305-311.
6.Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2001. 53(3): p. 321-339.
7.Chilkoti, A., et al., Targeted drug delivery by thermally responsive polymers. Advanced Drug Delivery Reviews, 2002. 54(5): p. 613-630.
8.Schild, H.G., Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 1992. 17(2): p. 163-249.
9.Aoyagi, T., et al., Novel bifunctional polymer with reactivity and temperature sensitivity. Journal of Biomaterials Science-Polymer Edition, 2000. 11(1): p. 101-110.
10.Aoki, T., et al., Thermosensitive Phase Transition of an Optically Active Polymer in Aqueous Milieu. Macromolecules, 2001. 34(10): p. 3118-3119.
11.Gan, L.H., Y.Y. Gan, and G.R. Deen, Poly(N-acryloyl-N‘-propylpiperazine):  A New Stimuli-Responsive Polymer. Macromolecules, 2000. 33(21): p. 7893-7897.
12.Gan, L.H., et al., New stimuli-responsive copolymers of N-acryloyl-N''-alkyl piperazine and methyl methacrylate and their hydrogels. Polymer, 2001. 42(1): p. 65-69.
13.Annaka, M., et al., Fluorescence Study on the Swelling Behavior of Comb-Type Grafted Poly(N-isopropylacrylamide) Hydrogels. Macromolecules, 2002. 35(21): p. 8173-8179.
14.Yoshida, R., et al., Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature, 1995. 374(6519): p. 240-242.
15.Matsukata, M., et al., Effect of Molecular Architecture of Poly(N-isopropylacrylamide)−Trypsin Conjugates on Their Solution and Enzymatic Properties. Bioconjugate Chemistry, 1996. 7(1): p. 96-101.
16.Takei, Y.G., et al., Dynamic Contact Angle Measurement of Temperature-Responsive Surface Properties for Poly(N-isopropylacrylamide) Grafted Surfaces. Macromolecules, 1994. 27(21): p. 6163-6166.
17.Kaneko, Y., et al., Rapid Deswelling Response of Poly(N-isopropylacrylamide) Hydrogels by the Formation of Water Release Channels Using Poly(ethylene oxide) Graft Chains. Macromolecules, 1998. 31(18): p. 6099-6105.
18.Chen, G.H. and A.S. Hoffman, Graft-Copolymers That Exhibit Temperature-Induced Phase-Transitions over a Wide-Range of pH. Nature, 1995. 373(6509): p. 49-52.
19.Zhang, K. and A. Khan, Phase Behavior of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Water. Macromolecules, 1995. 28(11): p. 3807-3812.
20.Bromberg, L.E. and E.S. Ron, Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Advanced Drug Delivery Reviews, 1998. 31(3): p. 197-221.
21.Alexandridis, P., J.F. Holzwarth, and T.A. Hatton, Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules, 1994. 27(9): p. 2414-2425.
22.Glatter, O., et al., Characterization of a Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymer (EO27-PO39-EO27) in Aqueous Solution. Macromolecules, 1994. 27(21): p. 6046-6054.
23.Kuijpers, A.J., et al., Characterization of the Network Structure of Carbodiimide Cross-Linked Gelatin Gels. Macromolecules, 1999. 32(10): p. 3325-3333.
24.Deming, T.J., Facile synthesis of block copolypeptides of defined architecture. Nature, 1997. 390(6658): p. 386-389.
25.Nowak, A.P., et al., Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature, 2002. 417(6887): p. 424-428.
26.Kopecek, J., Polymer chemistry - Swell gels. Nature, 2002. 417(6887): p. 388-+.
27.Petka, W.A., et al., Reversible hydrogels from self-assembling artificial proteins. Science, 1998. 281(5375): p. 389-392.
28.Philippova, O.E., et al., pH-Responsive Gels of Hydrophobically Modified Poly(acrylic acid). Macromolecules, 1997. 30(26): p. 8278-8285.
29.Torres-Lugo, M. and N.A. Peppas, Molecular Design and in Vitro Studies of Novel pH-Sensitive Hydrogels for the Oral Delivery of Calcitonin. Macromolecules, 1999. 32(20): p. 6646-6651.
30.Tonge, S.R. and B.J. Tighe, Responsive hydrophobically associating polymers: a review of structure and properties. Advanced Drug Delivery Reviews, 2001. 53(1): p. 109-122.
31.Murthy, N., et al., The design and synthesis of polymers for eukaryotic membrane disruption. Journal of Controlled Release, 1999. 61(1-2): p. 137-143.
32.Lee, A.S., et al., Structure of pH-Dependent Block Copolymer Micelles:  Charge and Ionic Strength Dependence. Macromolecules, 2002. 35(22): p. 8540-8551.
33.Gohy, J.-F., et al., Stimuli-Responsive Aqueous Micelles from an ABC Metallo-Supramolecular Triblock Copolymer. Macromolecules, 2002. 35(26): p. 9748-9755.
34.Sutton, R.C., et al., Microdomain characterization of styrene-imidazole copolymers. Macromolecules, 1988. 21(8): p. 2432-2439.
35.Ju, H.K., S.Y. Kim, and Y.M. Lee, pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer, 2001. 42(16): p. 6851-6857.
36.Dutta, P.K., J. Dutta, and V.S. Tripathi, Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific & Industrial Research, 2004. 63(1): p. 20-31.
37.Ito, Y., et al., pH-Sensitive Gating by Conformational Change of a Polypeptide Brush Grafted onto a Porous Polymer Membrane. Journal of the American Chemical Society, 1997. 119(7): p. 1619-1623.
38.Benns, J.M., et al., pH-Sensitive Cationic Polymer Gene Delivery Vehicle:  N-Ac-poly(l-histidine)-graft-poly(l-lysine) Comb Shaped Polymer. Bioconjugate Chemistry, 2000. 11(5): p. 637-645.
39.Eccleston, M.E., et al., pH-responsive pseudo-peptides for cell membrane disruption. Journal of Controlled Release, 2000. 69(2): p. 297-307.
40.Irvin, D.J., S.H. Goods, and L.L. Whinnery, Direct Measurement of Extension and Force in Conductive Polymer Gel Actuators. Chemistry of Materials, 2001. 13(4): p. 1143-1145.
41.Filipcsei, G., J. Feher, and M. Zrinyi, Electric field sensitive neutral polymer gels. Journal of Molecular Structure, 2000. 554(1): p. 109-117.
42.Zrinyi, M., Intelligent polymer gels controlled by magnetic fields. Colloid & Polymer Science, 2000. 278(2): p. 98-103.
43.Traitel, T., Y. Cohen, and J. Kost, Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions. Biomaterials, 2000. 21(16): p. 1679-1687.
44.You, L.-C., et al., Glucose-Sensitive Aggregates Formed by Poly(ethylene oxide)-block-poly(2-glucosyl- oxyethyl acrylate) with Concanavalin A in Dilute Aqueous Medium. Macromolecules, 2002. 36(1): p. 1-4.
45.Gao, Z., et al., Diacyllipid-Polymer Micelles as Nanocarriers for Poorly Soluble Anticancer Drugs. Nano Letters, 2002. 2(9): p. 979-982.
46.Langer, R. and D.A. Tirrell, Designing materials for biology and medicine. Nature, 2004. 428(6982): p. 487-492.
47.Caruso, F., Hollow Capsule Processing through Colloidal Templating and Self-Assembly. Chemistry – A European Journal, 2000. 6(3): p. 413-419.
48.Meier, W., Polymer nanocapsules. Chemical Society Reviews, 2000. 29(5): p. 295-303.
49.Caruso, F., R.A. Caruso, and H. Mohwald, Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998. 282(5391): p. 1111-1114.
50.Jang, J. and K. Lee, Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization. Chemical Communications, 2002(10): p. 1098-1099.
51.Jang, J. and H. Ha, Fabrication of Hollow Polystyrene Nanospheres in Microemulsion Polymerization Using Triblock Copolymers. Langmuir, 2002. 18(14): p. 5613-5618.
52.Daming, C. and et al., Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates. Nanotechnology, 2006. 17(6): p. 1661.
53.Stewart, S. and G. Liu, Hollow Nanospheres from Polyisoprene-block-poly(2-cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate). Chemistry of Materials, 1999. 11(4): p. 1048-1054.
54.Huang, H., et al., Nanocages Derived from Shell Cross-Linked Micelle Templates. Journal of the American Chemical Society, 1999. 121(15): p. 3805-3806.
55.Zhang, Y., et al., pH-Responsive Core−Shell Particles and Hollow Spheres Attained by Macromolecular Self-Assembly. Langmuir, 2005. 21(4): p. 1531-1538.
56.Donath, E., et al., Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angewandte Chemie International Edition, 1998. 37(16): p. 2201-2205.
57.Hu, Y., et al., Hollow Chitosan/Poly(acrylic acid) Nanospheres as Drug Carriers. Biomacromolecules, 2007. 8(4): p. 1069-1076.
58.Hu, Y., et al., Core-Template-Free Strategy for Preparing Hollow Nanospheres. Advanced Materials, 2004. 16(11): p. 933-937.
59.Hu, Y., et al., Synthesis and stimuli-responsive properties of chitosan/poly(acrylic acid) hollow nanospheres. Polymer, 2005. 46(26): p. 12703-12710.
60.Chuang, C.-Y., T.-M. Don, and W.-Y. Chiu, Synthesis and properties of chitosan-based thermo- and pH-responsive nanoparticles and application in drug release. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(11): p. 2798-2810.
61.Chuang, C.-Y., T.-M. Don, and W.-Y. Chiu, Synthesis and characterization of stimuli-responsive porous/hollow nanoparticles by self-assembly of chitosan-based graft copolymers and application in drug release. Journal of Polymer Science Part A: Polymer Chemistry, 2010. 48(11): p. 2377-2387.
62.Bajpai, A.K., et al., Responsive polymers in controlled drug delivery. Progress in Polymer Science, 2008. 33(11): p. 1088-1118.
63.Peppas, N.A. and A.R. Khare, Preparation, structure and diffusional behavior of hydrogels in controlled release. Advanced Drug Delivery Reviews. 11(1-2): p. 1-35.
64.Chandy, T. and C.P. Sharma, Prostaglandin E1-immobilized poly(vinyl alcohol)-blended chitosan membranes: Blood compatibility and permeability properties. Journal of Applied Polymer Science, 1992. 44(12): p. 2145-2156.
65.Kim, J.H., et al., Controlled release of riboflavin and insulin through crosslinked poly(vinyl alcohol)/chitosan blend membrane. Journal of Applied Polymer Science, 1992. 44(10): p. 1823-1828.
66.Majid Khan, G. and J.-B. Zhu, Studies on drug release kinetics from ibuprofen-carbomer hydrophilic matrix tablets: influence of co-excipients on release rate of the drug. Journal of Controlled Release, 1999. 57(2): p. 197-203.
67.Einerson, N.J., K.R. Stevens, and W.J. Kao, Synthesis and physicochemical analysis of gelatin-based hydrogels for drug carrier matrices. Biomaterials, 2003. 24(3): p. 509-523.
68.Choi, H.S., et al., Preparation and Characterization of Polypseudorotaxanes Based on Biodegradable Poly(l-lactide)/Poly(ethylene glycol) Triblock Copolymers. Macromolecules, 2003. 36(25): p. 9313-9318.
69.Patel, H., D.A. Raval, and D. Madamwar, Bioactive Polymers; Synthesis, Characterisation, Release And Antimicrobial Property Of Macromolecular Prodrug Of Ampicillin. Indian Journal of Pharmaceutical Sciences, 1997. 59(3): p. 153-157.
70.Grinsted, R.A., L. Clark, and J.L. Koenig, Study of cyclic sorption-desorption into poly(methyl methacrylate) rods using NMR imaging. Macromolecules, 1992. 25(4): p. 1235-1241.
71.Bajpai, A.K., J. Bajpai, and S. Shukla, Release dynamics of tetracycline from a loaded semi-interpenetrating polymeric material of polyvinyl alcohol and poly(acrylamide-co-styrene). Journal of Materials Science: Materials in Medicine, 2003. 14(4): p. 347-357.
72.Bajpai, A.K., J. Bajpai, and S. Shukla, MODULATION OF IN VITRO RELEASE OF CRYSTAL VIOLET FROM A BINARY POLYMER HYDROGEL SYSTEM. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2002. 39(5): p. 489 - 508.
73.Bajpai, A.K. and S. Bhanu, Immobilization of a-amylase in vinyl-polymer-based interpenetrating polymer networks. Colloid & Polymer Science, 2003. 282(1): p. 76-83.
74.Hariharan, D. and N.A. Peppas, Characterization, dynamic swelling behaviour and solute transport in cationic networks with applications to the development of swelling-controlled release systems. Polymer, 1996. 37(1): p. 149-161.
75.Ghandehari, H., P. Kopeckova, and J. Kopecek, In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials, 1997. 18(12): p. 861-872.
76.Akala, E.O., P. Kopeckova, and J. Kopecek, Novel pH-sensitive hydrogels with adjustable swelling kinetics. Biomaterials, 1998. 19(11-12): p. 1037-1047.
77.Ramkissoon-Ganorkar, C., et al., Modulating insulin-release profile from pH/thermosensitive polymeric beads through polymer molecular weight. Journal of Controlled Release, 1999. 59(3): p. 287-298.
78.Xie, G., et al., Preparation and characterization of monodisperse magnetic poly(styrene butyl acrylate methacrylic acid) microspheres in the presence of a polar solvent. Journal of Applied Polymer Science, 2003. 87(11): p. 1733-1738.
79.Zhang, C., P. Qineng, and H. Zhang, Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids and Surfaces B: Biointerfaces, 2004. 39(1-2): p. 69-75.
80.國立臺灣大學生物技術研究中心. 2001; Available from: http://juang.bst.ntu.edu.tw/Protein/Purification/P1.htm.
81.Xia, W., P. Liu, and J. Liu, Advance in chitosan hydrolysis by non-specific cellulases. Bioresource Technology, 2008. 99(15): p. 6751-6762.
82.莊仲揚, 環境敏感型幾丁聚醣奈米顆粒合成、性質與應用研究. 2010: 國立臺灣大學高分子科學與工程學研究所博士論文.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 聚(氮-異丙基丙烯醯胺)/聚乙烯醇衍生酸鹼/磁/熱敏感型奈米藥物載體於刺激藥物釋放之研究
2. 聚氮-異丙基丙烯醯胺與幾丁聚醣共聚乳膠顆粒之合成及其在藥物釋放上的應用
3. 醋酸丙酸纖維素/聚對苯二甲酸丁二酯摻合物之製備及其性質分析
4. 芯鞘型環境敏感性聚(氮-異丙基丙烯醯胺)/幾丁聚醣之電紡纖維製備及其於重金屬離子吸附應用
5. 環境敏感型高分子奈米材料製備(PNIPAAm/chitosan)及其於藥物釋放與金屬離子吸附之應用
6. 可撓性導電薄膜:聚苯乙烯磺酸-聚丙烯酸丁酯/聚3,4-乙烯基二氧噻吩之製備與性質研究
7. 環境敏感型幾丁聚醣奈米顆粒合成、性質與應用研究
8. 以聚醣類高分子包覆之乳酸菌於模擬胃腸環境中耐受性及釋放性質探討
9. 標的導向型磁性免疫中空藥物載體之製備與研究
10. 星狀聚胺酯高分子與衍生物之合成與性質研究
11. 利用環境敏感性嵌段共聚物與幾丁聚醣自組裝形成奈米藥物釋放載體
12. 相轉移複合材料(PMMA-Octadecane-AL2O3)微膠囊的製備及溫度調節之應用
13. 芯鞘型溫感性導電複合纖維之製備與其形態性質分析
14. 製備明膠/聚(氮-異丙基丙烯醯胺)溫感型可控有序多孔性結構薄膜與其藥物釋放之研究
15. 具溫感性、熱可交聯性聚(異丙基丙烯醯胺)共聚物及其導電碳黑複合材料之製備,靜電紡纖維,性質與形態分析