1.Gil, E.S. and S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004. 29(12): p. 1173-1222.
2.Okano, T., Biorelated polymers and gels : controlled release and applications in biomedical engineering. Series in polymers, interfaces, and biomaterials. 1998, San Diego: Academic Press. xvi, 257 p.
3.Kikuchi, A. and T. Okano, Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Progress in Polymer Science, 2002. 27(6): p. 1165-1193.
4.Hoffman, A.S., et al., Really smart bioconjugates of smart polymers and receptor proteins. Journal of Biomedical Materials Research, 2000. 52(4): p. 577-586.
5.Jeong, B. and A. Gutowska, Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends in Biotechnology, 2002. 20(7): p. 305-311.
6.Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2001. 53(3): p. 321-339.
7.Chilkoti, A., et al., Targeted drug delivery by thermally responsive polymers. Advanced Drug Delivery Reviews, 2002. 54(5): p. 613-630.
8.Schild, H.G., Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 1992. 17(2): p. 163-249.
9.Aoyagi, T., et al., Novel bifunctional polymer with reactivity and temperature sensitivity. Journal of Biomaterials Science-Polymer Edition, 2000. 11(1): p. 101-110.
10.Aoki, T., et al., Thermosensitive Phase Transition of an Optically Active Polymer in Aqueous Milieu. Macromolecules, 2001. 34(10): p. 3118-3119.
11.Gan, L.H., Y.Y. Gan, and G.R. Deen, Poly(N-acryloyl-N‘-propylpiperazine): A New Stimuli-Responsive Polymer. Macromolecules, 2000. 33(21): p. 7893-7897.
12.Gan, L.H., et al., New stimuli-responsive copolymers of N-acryloyl-N''-alkyl piperazine and methyl methacrylate and their hydrogels. Polymer, 2001. 42(1): p. 65-69.
13.Annaka, M., et al., Fluorescence Study on the Swelling Behavior of Comb-Type Grafted Poly(N-isopropylacrylamide) Hydrogels. Macromolecules, 2002. 35(21): p. 8173-8179.
14.Yoshida, R., et al., Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature, 1995. 374(6519): p. 240-242.
15.Matsukata, M., et al., Effect of Molecular Architecture of Poly(N-isopropylacrylamide)−Trypsin Conjugates on Their Solution and Enzymatic Properties. Bioconjugate Chemistry, 1996. 7(1): p. 96-101.
16.Takei, Y.G., et al., Dynamic Contact Angle Measurement of Temperature-Responsive Surface Properties for Poly(N-isopropylacrylamide) Grafted Surfaces. Macromolecules, 1994. 27(21): p. 6163-6166.
17.Kaneko, Y., et al., Rapid Deswelling Response of Poly(N-isopropylacrylamide) Hydrogels by the Formation of Water Release Channels Using Poly(ethylene oxide) Graft Chains. Macromolecules, 1998. 31(18): p. 6099-6105.
18.Chen, G.H. and A.S. Hoffman, Graft-Copolymers That Exhibit Temperature-Induced Phase-Transitions over a Wide-Range of pH. Nature, 1995. 373(6509): p. 49-52.
19.Zhang, K. and A. Khan, Phase Behavior of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Water. Macromolecules, 1995. 28(11): p. 3807-3812.
20.Bromberg, L.E. and E.S. Ron, Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Advanced Drug Delivery Reviews, 1998. 31(3): p. 197-221.
21.Alexandridis, P., J.F. Holzwarth, and T.A. Hatton, Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules, 1994. 27(9): p. 2414-2425.
22.Glatter, O., et al., Characterization of a Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymer (EO27-PO39-EO27) in Aqueous Solution. Macromolecules, 1994. 27(21): p. 6046-6054.
23.Kuijpers, A.J., et al., Characterization of the Network Structure of Carbodiimide Cross-Linked Gelatin Gels. Macromolecules, 1999. 32(10): p. 3325-3333.
24.Deming, T.J., Facile synthesis of block copolypeptides of defined architecture. Nature, 1997. 390(6658): p. 386-389.
25.Nowak, A.P., et al., Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature, 2002. 417(6887): p. 424-428.
26.Kopecek, J., Polymer chemistry - Swell gels. Nature, 2002. 417(6887): p. 388-+.
27.Petka, W.A., et al., Reversible hydrogels from self-assembling artificial proteins. Science, 1998. 281(5375): p. 389-392.
28.Philippova, O.E., et al., pH-Responsive Gels of Hydrophobically Modified Poly(acrylic acid). Macromolecules, 1997. 30(26): p. 8278-8285.
29.Torres-Lugo, M. and N.A. Peppas, Molecular Design and in Vitro Studies of Novel pH-Sensitive Hydrogels for the Oral Delivery of Calcitonin. Macromolecules, 1999. 32(20): p. 6646-6651.
30.Tonge, S.R. and B.J. Tighe, Responsive hydrophobically associating polymers: a review of structure and properties. Advanced Drug Delivery Reviews, 2001. 53(1): p. 109-122.
31.Murthy, N., et al., The design and synthesis of polymers for eukaryotic membrane disruption. Journal of Controlled Release, 1999. 61(1-2): p. 137-143.
32.Lee, A.S., et al., Structure of pH-Dependent Block Copolymer Micelles: Charge and Ionic Strength Dependence. Macromolecules, 2002. 35(22): p. 8540-8551.
33.Gohy, J.-F., et al., Stimuli-Responsive Aqueous Micelles from an ABC Metallo-Supramolecular Triblock Copolymer. Macromolecules, 2002. 35(26): p. 9748-9755.
34.Sutton, R.C., et al., Microdomain characterization of styrene-imidazole copolymers. Macromolecules, 1988. 21(8): p. 2432-2439.
35.Ju, H.K., S.Y. Kim, and Y.M. Lee, pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer, 2001. 42(16): p. 6851-6857.
36.Dutta, P.K., J. Dutta, and V.S. Tripathi, Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific & Industrial Research, 2004. 63(1): p. 20-31.
37.Ito, Y., et al., pH-Sensitive Gating by Conformational Change of a Polypeptide Brush Grafted onto a Porous Polymer Membrane. Journal of the American Chemical Society, 1997. 119(7): p. 1619-1623.
38.Benns, J.M., et al., pH-Sensitive Cationic Polymer Gene Delivery Vehicle: N-Ac-poly(l-histidine)-graft-poly(l-lysine) Comb Shaped Polymer. Bioconjugate Chemistry, 2000. 11(5): p. 637-645.
39.Eccleston, M.E., et al., pH-responsive pseudo-peptides for cell membrane disruption. Journal of Controlled Release, 2000. 69(2): p. 297-307.
40.Irvin, D.J., S.H. Goods, and L.L. Whinnery, Direct Measurement of Extension and Force in Conductive Polymer Gel Actuators. Chemistry of Materials, 2001. 13(4): p. 1143-1145.
41.Filipcsei, G., J. Feher, and M. Zrinyi, Electric field sensitive neutral polymer gels. Journal of Molecular Structure, 2000. 554(1): p. 109-117.
42.Zrinyi, M., Intelligent polymer gels controlled by magnetic fields. Colloid & Polymer Science, 2000. 278(2): p. 98-103.
43.Traitel, T., Y. Cohen, and J. Kost, Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions. Biomaterials, 2000. 21(16): p. 1679-1687.
44.You, L.-C., et al., Glucose-Sensitive Aggregates Formed by Poly(ethylene oxide)-block-poly(2-glucosyl- oxyethyl acrylate) with Concanavalin A in Dilute Aqueous Medium. Macromolecules, 2002. 36(1): p. 1-4.
45.Gao, Z., et al., Diacyllipid-Polymer Micelles as Nanocarriers for Poorly Soluble Anticancer Drugs. Nano Letters, 2002. 2(9): p. 979-982.
46.Langer, R. and D.A. Tirrell, Designing materials for biology and medicine. Nature, 2004. 428(6982): p. 487-492.
47.Caruso, F., Hollow Capsule Processing through Colloidal Templating and Self-Assembly. Chemistry – A European Journal, 2000. 6(3): p. 413-419.
48.Meier, W., Polymer nanocapsules. Chemical Society Reviews, 2000. 29(5): p. 295-303.
49.Caruso, F., R.A. Caruso, and H. Mohwald, Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998. 282(5391): p. 1111-1114.
50.Jang, J. and K. Lee, Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization. Chemical Communications, 2002(10): p. 1098-1099.
51.Jang, J. and H. Ha, Fabrication of Hollow Polystyrene Nanospheres in Microemulsion Polymerization Using Triblock Copolymers. Langmuir, 2002. 18(14): p. 5613-5618.
52.Daming, C. and et al., Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates. Nanotechnology, 2006. 17(6): p. 1661.
53.Stewart, S. and G. Liu, Hollow Nanospheres from Polyisoprene-block-poly(2-cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate). Chemistry of Materials, 1999. 11(4): p. 1048-1054.
54.Huang, H., et al., Nanocages Derived from Shell Cross-Linked Micelle Templates. Journal of the American Chemical Society, 1999. 121(15): p. 3805-3806.
55.Zhang, Y., et al., pH-Responsive Core−Shell Particles and Hollow Spheres Attained by Macromolecular Self-Assembly. Langmuir, 2005. 21(4): p. 1531-1538.
56.Donath, E., et al., Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angewandte Chemie International Edition, 1998. 37(16): p. 2201-2205.
57.Hu, Y., et al., Hollow Chitosan/Poly(acrylic acid) Nanospheres as Drug Carriers. Biomacromolecules, 2007. 8(4): p. 1069-1076.
58.Hu, Y., et al., Core-Template-Free Strategy for Preparing Hollow Nanospheres. Advanced Materials, 2004. 16(11): p. 933-937.
59.Hu, Y., et al., Synthesis and stimuli-responsive properties of chitosan/poly(acrylic acid) hollow nanospheres. Polymer, 2005. 46(26): p. 12703-12710.
60.Chuang, C.-Y., T.-M. Don, and W.-Y. Chiu, Synthesis and properties of chitosan-based thermo- and pH-responsive nanoparticles and application in drug release. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(11): p. 2798-2810.
61.Chuang, C.-Y., T.-M. Don, and W.-Y. Chiu, Synthesis and characterization of stimuli-responsive porous/hollow nanoparticles by self-assembly of chitosan-based graft copolymers and application in drug release. Journal of Polymer Science Part A: Polymer Chemistry, 2010. 48(11): p. 2377-2387.
62.Bajpai, A.K., et al., Responsive polymers in controlled drug delivery. Progress in Polymer Science, 2008. 33(11): p. 1088-1118.
63.Peppas, N.A. and A.R. Khare, Preparation, structure and diffusional behavior of hydrogels in controlled release. Advanced Drug Delivery Reviews. 11(1-2): p. 1-35.
64.Chandy, T. and C.P. Sharma, Prostaglandin E1-immobilized poly(vinyl alcohol)-blended chitosan membranes: Blood compatibility and permeability properties. Journal of Applied Polymer Science, 1992. 44(12): p. 2145-2156.
65.Kim, J.H., et al., Controlled release of riboflavin and insulin through crosslinked poly(vinyl alcohol)/chitosan blend membrane. Journal of Applied Polymer Science, 1992. 44(10): p. 1823-1828.
66.Majid Khan, G. and J.-B. Zhu, Studies on drug release kinetics from ibuprofen-carbomer hydrophilic matrix tablets: influence of co-excipients on release rate of the drug. Journal of Controlled Release, 1999. 57(2): p. 197-203.
67.Einerson, N.J., K.R. Stevens, and W.J. Kao, Synthesis and physicochemical analysis of gelatin-based hydrogels for drug carrier matrices. Biomaterials, 2003. 24(3): p. 509-523.
68.Choi, H.S., et al., Preparation and Characterization of Polypseudorotaxanes Based on Biodegradable Poly(l-lactide)/Poly(ethylene glycol) Triblock Copolymers. Macromolecules, 2003. 36(25): p. 9313-9318.
69.Patel, H., D.A. Raval, and D. Madamwar, Bioactive Polymers; Synthesis, Characterisation, Release And Antimicrobial Property Of Macromolecular Prodrug Of Ampicillin. Indian Journal of Pharmaceutical Sciences, 1997. 59(3): p. 153-157.
70.Grinsted, R.A., L. Clark, and J.L. Koenig, Study of cyclic sorption-desorption into poly(methyl methacrylate) rods using NMR imaging. Macromolecules, 1992. 25(4): p. 1235-1241.
71.Bajpai, A.K., J. Bajpai, and S. Shukla, Release dynamics of tetracycline from a loaded semi-interpenetrating polymeric material of polyvinyl alcohol and poly(acrylamide-co-styrene). Journal of Materials Science: Materials in Medicine, 2003. 14(4): p. 347-357.
72.Bajpai, A.K., J. Bajpai, and S. Shukla, MODULATION OF IN VITRO RELEASE OF CRYSTAL VIOLET FROM A BINARY POLYMER HYDROGEL SYSTEM. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2002. 39(5): p. 489 - 508.
73.Bajpai, A.K. and S. Bhanu, Immobilization of a-amylase in vinyl-polymer-based interpenetrating polymer networks. Colloid & Polymer Science, 2003. 282(1): p. 76-83.
74.Hariharan, D. and N.A. Peppas, Characterization, dynamic swelling behaviour and solute transport in cationic networks with applications to the development of swelling-controlled release systems. Polymer, 1996. 37(1): p. 149-161.
75.Ghandehari, H., P. Kopeckova, and J. Kopecek, In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials, 1997. 18(12): p. 861-872.
76.Akala, E.O., P. Kopeckova, and J. Kopecek, Novel pH-sensitive hydrogels with adjustable swelling kinetics. Biomaterials, 1998. 19(11-12): p. 1037-1047.
77.Ramkissoon-Ganorkar, C., et al., Modulating insulin-release profile from pH/thermosensitive polymeric beads through polymer molecular weight. Journal of Controlled Release, 1999. 59(3): p. 287-298.
78.Xie, G., et al., Preparation and characterization of monodisperse magnetic poly(styrene butyl acrylate methacrylic acid) microspheres in the presence of a polar solvent. Journal of Applied Polymer Science, 2003. 87(11): p. 1733-1738.
79.Zhang, C., P. Qineng, and H. Zhang, Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids and Surfaces B: Biointerfaces, 2004. 39(1-2): p. 69-75.
80.國立臺灣大學生物技術研究中心. 2001; Available from: http://juang.bst.ntu.edu.tw/Protein/Purification/P1.htm.
81.Xia, W., P. Liu, and J. Liu, Advance in chitosan hydrolysis by non-specific cellulases. Bioresource Technology, 2008. 99(15): p. 6751-6762.
82.莊仲揚, 環境敏感型幾丁聚醣奈米顆粒合成、性質與應用研究. 2010: 國立臺灣大學高分子科學與工程學研究所博士論文.