跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許慶霖
研究生(外文):Ching-Ling Hsu
論文名稱:新生幼鼠暴露在血壓胺回收抑制劑下造成成鼠延腦血壓胺系統迴路及心血管功能之改變
論文名稱(外文):Neonatal exposure to selective serotonin reuptake inhibitor altered the medullary serotonergic circuitry and cardiovascular function in adult rats
指導教授:陳瑞芬陳瑞芬引用關係
指導教授(外文):Ruei-Feng Chen
口試委員:嚴震東李立仁蔡孟利
口試日期:2011-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:62
中文關鍵詞:血壓胺延腦自主神經功能
外文關鍵詞:serotoninmedullaautonomic function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
最近幾年研究指出,若幼鼠在新生階段暴露在血壓胺回收抑制劑(selective serotonin reuptake inhibitors, SSRIs)下,將會使得幼鼠腦中血壓胺神經元系統異常,而這些異常會持續到成鼠(Maciag et al., 2006)。我們將利用此一策略進一步研究延腦血壓胺神經元系統異常,是否會造成自主神經功能改變。在幼鼠出生後第八至二十一天(postnatal day, PN8-21),以皮下注射的方式分別施打生理食鹽水或血壓胺回收抑制劑(Citalopram, 10 mg/kg, twice daily),結果顯示實驗組動物的血壓胺速率決定酵素──色胺酸氫化酶(tryptophan hydroxylase, TPH)在幼鼠(PN22-24)與成鼠(PN64-84)腦中縫合核群之表現量相對於控制組顯著減少。生理方面,以無線遙測記錄的方式(telemetry)分別量測實驗組與控制組成鼠在放鬆與緊張情況下之心率與平均動脈壓,並分析兩組動物的心率變異性(heart rate variability),利用頻譜分析(power spectral analysis)來量化交感神經與副交感神經活性,並比較兩組動物的自發性感壓反射敏感度(spontaneous baroreflex sensitivity)。實驗結果顯示SSRI處理動物的交感與副交感神經活性明顯失衡,具有較高的交感神經活性與較低的副交感神經活性;其調控血壓之能力也明顯變差。顯示新生幼鼠暴露於SSRI下,已造成成鼠延腦血壓胺神經網路異常以及調控心血管的自主神經功能受損。

Recent studies have reported that exposure to highly selective serotonin reuptake inhibitors (SSRIs), citalopram, during neonatal stage in rodents produced profound changes in the serotonergic system. Such neurochemical alterations persisted into adulthood (Maciag et al., 2006). We further utilize such strategy to investigate whether the effects of serotonergic abnormalities in medulla play a role on the autonomic function. Rat pups were injected with either saline or citalopram (10 mg/kg, twice daily, s.c.) from postnatal (PN) day 8 to 21. The animals were then studied either at PN22-24 or at PN64-84. The changes of medullary serotonergic system were examined and compared between the two groups. The chronic neonatal exposure to citalopram results in profound reductions of the rate-limiting serotonin synthetic enzyme (tryptophan hydroxylase, TPH) in raphe nuclei. Heart rate (HR) and mean arterial pressure (MAP) were monitored by telemetry in freely moving adult rats. The autonomic function were compared between saline- and SSRI-treated animals in resting and stress conditions by means of spectral analysis of heart rate variabilities and spontaneous baroreflex sensitivity (sBRS). SSRI-treated animals showed an imbalance autonomic function including an increased sympathetic modulation and a decreased parasympathetic tone, that accompanied by reduced sBRS. Our present findings provide a potential link between serotonergic abnormality and cardiovascular dysfunction.

Table of Contents
Abbreviations…………………………………………………………6

Introduction…………………………………………………………7
Serotonergic system………………………………………………………………… ……7
Medulla: the cardiorespiratory and autonomic control center………………………………8
Heart rate variability………………………………………………………………………12
Spectral analysis of heart rate variability…………………………………………………13
Blood pressure variability…………………………………………………………………15
Spontaneous baroreflex sensitivity……………………………………………………16
Neonatal Exposure to SSRIs…………………………………………………………17
Purpose of the present study………………………………………………………19

Materials and Methods……………………………………………………20
Animals……………………………………………………………………………………20
TPH Immunocytochemistry ………………………………………………………………20
Intensity analysis………………………………………………………………………21
Cell quantification ……………………………………………………………………22
Telemetry probe implantation………………………………………………………………23
Physiological Test………………………………………………………………………23
Spectra analysis of HRV and BPV…………………………………………………………24
Spontaneous baroreflex sensitivity…………………………………………………………25
Statistical analysis…………………………………………………………………………25

Results………………………………………………………………………26
Effects of Neonatal SSRI exposure on body weight………………………………………26
Effects of Neonatal SSRI exposure on serotonergic cell numbers…………………………26
Effects of Neonatal SSRI exposure on immunoreactivity of TPH………………………27
Effects of Neonatal SSRI exposure on BP, HR, and body temperature……………………28
Effects of Neonatal SSRI exposure on recovery time……………………………………29
Effects of Neonatal SSRI exposure on autonomic function………………………………29
Effects of Neonatal SSRI exposure on sBRS……………………………………………30

Discussion……………………………………………………………………31
Effects of neonatal exposure to citalopram on serotonergic neurons of RMg and ROb………………………………………………………………………………………31
Effects of neonatal citalopram exposure on autonomic function…………………………32
Conclusion and perspectives………………………………………………………………35
References…………………………………………………………………37

Figures……………………………………………………………………52

Appendix……………………………………………………………………66
TPH immunostaining protocol……………………………………………………………66


Abumaria N, Rygula R, Hiemke C, Fuchs E, Havemann-Reinecke U, Rüther E, Flügge G. (2007). Effect of chronic citalopram on serotonin-related and stress-regulated genes in the dorsal raphe nucleus of the rat. Eur Neuropsychopharmacol. 17(6-7):417-29.
Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. Science. 1981;213:220-222.
Appel ML, Berger RD, Saul JP, Smith JM, Cohen RJ. (1989). Beat to beat variability in cardiovascular variables: noise or music? J Am Coll Cardiol. 14(5):1139-48.
Bago M, Marson L, Dean C. (2002). Serotonergic projections to the rostroventrolateral medulla from midbrain and raphe nuclei. Brain Res. 945(2):249-58.
Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. (1992). Correlations among time and frequency domain measures of heart period variability two weeks after acute myocardial infarction. Am J Cardiol. 69(9):891-8.
Bortolozzi A, Amargós-Bosch M, Toth M, Artigas F, Adell A. (2004). In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J Neurochem. 88(6):1373-9.
Bouali S, Evrard A, Chastanet M, Lesch KP, Hamon M, Adrien J. (2003). Sex hormone-dependent desensitization of 5-HT1A autoreceptors in knockout mice deficient in the 5-HT transporter. Eur J Neurosci. 18(8):2203-12.
Cao WH, Morrison SF. (2003). Disinhibition of rostral raphe pallidus neurons increases cardiac sympathetic nerve activity and heart rate. Brain Res. 980(1):1-10.
Cheng Z, Powley TL. (2000). Nucleus ambiguus projections to cardiac ganglia of rat atria: an anterograde tracing study. J Comp Neurol. 424(4):588-606
Chess GF, Tam RM, Calaresu FR. (1975). Influence of cardiac neural inputs on rhythmic variations of heart period in the cat. Am J Physiol. 228(3):775-80
Claassen V, Davies JE, Hertting G, Placheta P. (1977). Fluvoxamine, a specific 5-hydroxytryptamine uptake inhibitor. Br J Pharmacol. 60(4):505-16.
Coleman MJ, Dampney RA. (1995). Powerful depressor and sympathoinhibitory effects evoked from neurons in the caudal raphe pallidus and obscurus. Am J Physiol. 268(5 Pt 2):R1295-302.
Czachura JF, Rasmussen K. (2000). Effects of acute and chronic administration of fluoxetine on the activity of serotonergic neurons in the dorsal raphe nucleus of the rat. Naunyn Schmiedebergs Arch Pharmacol. 362(3):266-75
Dampney RA. (1994). Functional organization of central pathways regulating the cardiovascular system. Physiol Rev. 74(2):323-64. Review.
Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, Polson JW, Potts PD, Tagawa T. (2002). Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol. 29(4):261-8. Review.
David Jordon. (2004). Vagal control of the heart: central serotonergic (5-HT) mechanisms. Exp Physiol. 90.2 pp 175-181.
Davidson NS, Goldner S, McCloskey DI. (1976). Respiratory modulation of barareceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J Physiol. 259(2):523-30.
Dean C, Bago M. (2002). Renal sympathoinhibition mediated by 5-HT(1A) receptors in the RVLM during severe hemorrhage in rats. Am J Physiol Regul Integr Comp Physiol. 282(1):R122-30.
Duncan JR, Paterson DS, Kinney HC. (2008). The development of nicotinic receptors in the human medulla oblongata: inter-relationship with the serotonergic system. Auton Neurosci. 144(1-2):61-75.
Eckberg DL. (2003). The human respiratory gate. J Physiol. 548(Pt 2):339-52.
Eckberg DL, Convertino VA, Fritsch JM, Doerr DF. (1992). Reproducibility of human vagal carotid baroreceptor-cardiac reflex responses. Am J Physiol. 263(1 Pt 2):R215-20.
Eckberg DL, Orshan CR. (1977). Respiratory and baroreceptor reflex interactions in man. J Clin Invest. 59(5):780-5.
Fava M, Rosenbaum JF, Pava JA, McCarthy MK, Steingard RJ, Bouffides E. (1993). Anger attacks in unipolar depression, Part 1: Clinical correlates and response to fluoxetine treatment. Am J Psychiatry. 150(8):1158-63.
Feenstra MG, van Galen H, Te Riele PJ, Botterblom MH, Mirmiran M. (1996). Decreased hypothalamic serotonin levels in adult rats treated neonatally with clomipramine. Pharmacol Biochem Behav. 55(4):647-52.
Ferguson DW, Berg WJ, Roach PJ, Oren RM, Mark AL. (1992). Effects of heart failure on baroreflex control of sympathetic neural activity. Am J Cardiol. 69(5):523-31.
Filiano JJ, Kinney HC. (1994). A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol Neonate. 65(3-4):194-7.
Floras JS, Jones JV, Hassan MO, Sleight P. (1988). Effects of acute and chronic beta-adrenoceptor blockade on baroreflex sensitivity in humans. J Auton Nerv Syst. 25(2-3):87-94.
Furlan R, Guzetti S, Crivellaro W, Dassi S, Tinelli M, Baselli G, Cerutti S, Lombardi F, Pagani M, Malliani A. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation. 1990;81:537-547.
Gilbey MP, Jordan D, Richter DW, Spyer KM. (1984). Synaptic mechanisms involved in the inspiratory modulation of vagal cardio-inhibitory neurones in the cat. J Physiol. 356:65-78.
Gobbi G, Murphy DL, Lesch K, Blier P. (2001). Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther. 296(3):987-95.
Gorini C, Jameson HS, Mendelowitz D. (2009). Serotonergic modulation of the trigeminocardiac reflex neurotransmission to cardiac vagal neurons in the nucleus ambiguus. J Neurophysiol. 102(3):1443-50. Epub 2009 Jun 24.
Hansen HH, Sánchez C, Meier E. (1997). Neonatal administration of the selective serotonin reuptake inhibitor Lu 10-134-C increases forced swimming-induced immobility in adult rats: a putative animal model of depression? J Pharmacol Exp Ther. 283(3):1333-41.
Haselton JR, Guyenet PG. (1989). Central respiratory modulation of medullary sympathoexcitatory neurons in rat. Am J Physiol. 256(3 Pt 2):R739-50.
Henze M, Hart D, Samarel A, Barakat J, Eckert L, Scrogin K. (2008). Persistent alterations in heart rate variability, baroreflex sensitivity, and anxiety-like behaviors during development of heart failure in the rat. Am J Physiol Heart Circ Physiol. 295(1):H29-38.
Hilakivi LA, Hilakivi I, Kiianmaa K. (1987). Neonatal antidepressant administration suppresses concurrent active (REM) sleep and increases adult alcohol consumption in rats. Alcohol Alcohol Suppl. 1:339-43.
Hilakivi LA, Sinclair JD, Hilakivi IT. (1984). Effects of neonatal treatment with clomipramine on adult ethanol related behavior in the rat. Brain Res. 317(1):129-32.
Hildreth CM, Padley JR, Pilowsky PM, Goodchild AK. (2008). Impaired serotonergic regulation of heart rate may underlie reduced baroreflex sensitivity in an animal model of depression. Am J Physiol Heart Circ Physiol. 294(1):H474-80.
Hirsh JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol. 1981;241:H620-H629.
Hjorth S, Bengtsson HJ, Milano S. (1996). Raphe 5-HT1A autoreceptors, but not postsynaptic 5-HT1A receptors or beta-adrenoceptors, restrain the citalopram-induced increase in extracellular 5-hydroxytryptamine in vivo. Eur J Pharmacol. 316(1):43-7.
Horschitz S, Hummerich R, Schloss P. (2001). Down-regulation of the rat serotonin transporter upon exposure to a selective serotonin reuptake inhibitor. Neuroreport. 12(10):2181-4.
Izzo PN, Deuchars J & Spyer KM. (1993). Localization of cardiac vagal preganglionic motoneurones in the rat: immunocytochemical evidence of synaptic inputs containing 5-hydroxytryptamine. J Comp Neurol 327, 572-583.
Jordan D, Donoghue S, Spyer KM. (1981). Respiratory modulation of afferent terminal excitability in the nucleus tractus solitarius. J Auton Nerv Syst. 3(2-4):291-7.
Jordan D. (2005). Vagal control of the heart: central serotonergic (5-HT) mechanisms. Exp Physiol. 90(2):175-81.
Kamath MV, Fallen EL. Correction of the heart rate variability signal for ectopics and missing beats. In: Malik M, Camm AJ, eds. (1995). Heart Rate Variability. Armonk, NY: Futura;75-85.
Kay SM, Marple SL. Spectrum analysis: a modern perspective. Proc IEEE. 1981;69:1380-1419.
Kellett DO, Stanford SC, Machado BH, Jordan D, Ramage AG. (2005). Effect of 5-HT depletion on cardiovascular vagal reflex sensitivity in awake and anesthetized rats. Brain Res. 1054(1):61-72.
Kidd C, Linden RJ. (1975). Recent advances in the physiology of cardiovascular reflexes, with special reference to hypotension. Br J Anaesth. 47(7):767-76.
Kunze DL. (1972). Reflex discharge patterns of cardiac vagal efferent fibres. J Physiol. 222(1):1-15.
Kuo TB and Yang CC. (2005). Sleep-related changes in cardiovascular neural regulation in spontaneously hypertensive rats. Circulation. 112(6):849-54.
La Rovere MT, Pinna GD, Raczak G. (2008). Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol. 13(2):191-207.
Levy MN. (1971). Sympathetic-parasympathetic interactions in the heart. Circ Res. 29(5):437-45.
Li Q, Wichems C, Heils A, Lesch KP, Murphy DL. (2000). Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J Neurosci. 20(21):7888-95.
Liu Q, Fehring C, Lowry TF, Wong-Riley MT. (2009). Postnatal development of metabolic rate during normoxia and acute hypoxia in rats: implication for a sensitive period. J Appl Physiol. 106(4):1212-22.
Liu Q, Wong-Riley MT. (2005). Postnatal developmental expressions of neurotransmitters and receptors in various brain stem nuclei of rats. J Appl Physiol. 98(4):1442-57.
Liu Q, Wong-Riley MT. (2010). Postnatal changes in tryptophan hydroxylase and serotonin transporter immunoreactivity in multiple brainstem nuclei of the rat: implications for a sensitive period. J Comp Neurol. 518(7):1082-97.
Maciag D, Coppinger D, Paul IA. (2006). Evidence that the deficit in sexual behavior in adult rats neonatally exposed to citalopram is a consequence of 5-HT1 receptor stimulation during development. Brain Res. 1125(1):171-5.
Maciag D, Williams L, Coppinger D, Paul IA. (2006). Neonatal citalopram exposure produces lasting changes in behavior which are reversed by adult imipramine treatment. Eur J Pharmacol. 27;532(3):265-9.
Machado BH, Brody MJ. (1988). Role of the nucleus ambiguus in the regulation of heart rate and arterial pressure. Hypertension. 11(6 Pt 2):602-7.
Machado BH, Mauad H, Chianca Júnior DA, Haibara AS, Colombari E. (1997). Autonomic processing of the cardiovascular reflexes in the nucleus tractus solitarii. Braz J Med Biol Res. 30(4):533-43.
Macrae IM, Minson JB, Kapoor V, Morris MJ, Chalmers JP. (1986). Midline B3 serotonin nerves in rat medulla are involved in hypotensive effect of methyldopa. J Cardiovasc Pharmacol. 8(2):381-5.
Marco EJ, Meek JL. (1979). The effects of antidepressants on serotonin turnover in discrete regions of rat brain. Naunyn Schmiedebergs Arch Pharmacol. 306(1):75-9.
Malik M, Farrell T, Cripps T, Camm AJ. (1989). Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur Heart J. 10(12):1060-74.
Malik M. (1996). Heart rate variability. Circulation. 93:1043-1065.
Malliani A. (1982) Cardiovascular sympathetic afferent fibers. Rev Physiol Biochem Pharmacol. 94:11-74.
Malliani A, Pagani M, Lombardi F. (1994). Importance of appropriate spectral methodology to assess heart rate variability in the frequency domain. Hypertension. 24(1):140-2.
Malliani A, Pagani M, Lombardi F, Cerutti S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation. 84:1482-1492.
McAllen RM, Malpas SC. (1997). Sympathetic burst activity: characteristics and significance. Clin Exp Pharmacol Physiol. 24(11):791-9.
McAllen RM, Spyer KM. (1978). The baroreceptor input to cardiac vagal motoneurones. J Physiol. 282:365-74.
Mendelowitz D, Kunze DL. (1991). Identification and dissociation of cardiovascular neurons from the medulla for patch clamp analysis. Neurosci Lett. 132(2):217-21.
Meny RG, Carroll JL, Carbone MT, et al. (1994). Cardiorespiratory recordings from infants dying suddenly and unexpectedly at home. Pediatrics 93:44–49.
Mirmiran M, van de Poll NE, Corner MA, van Oyen HG, Bour HL. (1981). Suppression of active sleep by chronic treatment with chlorimipramine during early postnatal development: effects upon adult sleep and behavior in the rat. Brain Res. 204(1):129-46.
Monda M, Amaro S, Sullo A, De Luca B. (1994). Nitric oxide reduces the thermogenic changes induced by lateral hypothalamic lesion. J Physiol Paris. 88(6):347-52.
Morrison SF. (2001). Differential control of sympathetic outflow. Am J Physiol Regul Integr Comp Physiol. 281(3):R683-98.
Moon RY, Kington M, Oden R, Iglesias J, Hauck FR. (2007). Physician recommendations regarding SIDS risk reduction: a national survey of pediatricians and family physicians. Clin Pediatr (Phila).46(9):791-800.
Orer HS, Gebber GL, Barman SM. (2008). Role of serotonergic input to the ventrolateral medulla in expression of the 10-Hz sympathetic nerve rhythm. Am J Physiol Regul Integr Comp Physiol. 294(5):R1435-44.
Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell''Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog. Circ Res. 59:178-193.
Pagani M, Malfatto G, Pierini S, Casati R, Masu AM, Poli M, Guzzetti S, Lombardi F, Cerutti S, Malliani A. (1988). Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J Auton Nerv Syst. 23:143-153.
Parati G, Casadei R, Zanchetti A, Mancia G. (1988). Variability of arterial blood pressure: importance, mechanisms and clinical significance. G Ital Cardiol. 18(10):868-78.
Parati G, Ulian L, Santucciu C, Omboni S, Mancia G. (1995). Blood pressure variability, cardiovascular risk and antihypertensive treatment. J Hypertens Suppl. 13(4):S27-34.
Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF, Kinney HC. (2006). Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA. 296(17):2124-32.
Paton JF, Silva-Carvalho L, Thompson CS, Spyer KM. (1990). Nucleus tractus solitarius as mediator of evoked parabrachial cardiovascular responses in the decerebrate rabbit. J Physiol. 428:693-705.
Persson PB. (1996). Modulation of cardiovascular control mechanisms and their interaction. Physiol Rev. 76(1):193-244.
Pigott TA, Seay SM. (1999). A review of the efficacy of selective serotonin reuptake inhibitors in obsessive-compulsive disorder. J Clin Psychiatry. 60(2):101-6.
Pomeranz M, Macaulay RJB, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, Benson M. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 248:H151-H153.
Porges SW. (1995). Cardiac vagal tone: a physiological index of stress. Neurosci Biobehav Rev. 19(2):225-33. Review.
Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, el Mestikawy S, Hamon M, Descarries L. (2000). Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol. 417(2):181-94.
Rubenstein JL. (1998). Development of serotonergic neurons and their projections. Biol Psychiatry. 44(3):145-50.
Sayers BM. (1973). Analysis of heart rate variability. Ergonomics. 16:17-32.
Sleight P. (1988). Importance of cardiovascular reflexes in disease. Am J Med. 11;84(3A):92-6.
Spencer SE, Sawyer WB, Loewy AD. (1990). L-glutamate mapping of cardioreactive areas in the rat posterior hypothalamus. Brain Res. 511(1):149-57.
Spyer KM. (1981). Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol. 88:24-124.
Stauss HM. (2007). Identification of blood pressure control mechanisms by power spectral analysis. Clin Exp Pharmacol Physiol. 34(4):362-8.
Stauss HM, Kregel KC. (1996). Frequency response characteristic of sympathetic-mediated vasomotor waves in conscious rats. Am J Physiol. 271:H1416-22.
Stauss HM, Persson PB. (2006). Cardiovascular variability and the autonomic nervous system. J Hypertens. 24(9):1902-5. No abstract available.
Stauss HM, Rarick KR, Deklotz RJ, Sheriff DD. (2009). Frequency response characteristics of whole body autoregulation of blood flow in rats. Am J Physiol Heart Circ Physiol. 296(5):H1607-16.
Steinbusch HW. (1981). Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neurocsience 6, 557-618.
Thach BT. (2005). The role of respiratory control disorders in SIDS. Respir Physiol Neurobiol 149:343–353.
Tsai ML, Chu LW, Chai CY, Yen CT. (1997). Frequency dependent sympathetic modulation of vasomotor tone in the anesthetized rat. Neurosci Lett. 221(2-3):109-12.
Vaswani M, Linda FK, Ramesh S. (2003). Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry. 27(1):85-102.
Vijayakumar M, Meti BL. (1999). Alterations in the levels of monoamines in discrete brain regions of clomipramine-induced animal model of endogenous depression. Neurochem Res. 24(3):345-9.
Vennemann M, Bajanowski T, Butterfass-Bahloul T, Sauerland C, Jorch G, Brinkmann B, Mitchell EA. (2007) Do risk factors differ between explained sudden unexpected death in infancy and sudden infant death syndrome? Arch Dis Child. 92(2):133-6.
Wang Y, Ramage AG. (2001). The role of central 5-HT1A receptors in the control of B-fibre cardiac and bronchoconstrictor vagal preganglionic neurones in anaesthetized cats. J Physiol (London). 536: 753–67.
Wang J, Wang X, Irnaten M,Venkatesan P, Evans C, Baxi S, et al. (2003). Endogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons. J Neurophysiol. 89: 2473–81.
Wan-Ting Tseng, Ruei-Feng Chen, Meng-Li Tsai, Chen-Tung Yen. (2009). Correlation of discharges of rostral ventrolateral medullary neurons with the low-frequency sympathetic rhythm in rats. Neuroscience Letters. 454:22-27.
West MJ, Slomianka L, Gundersen HJ. (1991). Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec. 231(4):482-97.
Willinger M, James LS, Catz C. (1991). Defining the sudden infant death syndrome (SIDS): deliberations of an expert panel convened by the National Institute of Child Health and Human Development. Pediatr Pathol. 11(5):677-84.
Yong-hua CHEN, Li-li HOU, Ji-jiang WANG. (2008). 5-HT1A/7 receptor agonist excites cardiac vagal neurons via inhibition of both GABAergic and glycinergic inputs. Acta Pharmacol Sin. 29(5): 529–538.
Zohar J, Westenberg HG. (2000). Anxiety disorders: a review of tricyclic antidepressants and selective serotonin reuptake inhibitors. Acta Psychiatr Scand Suppl. 403:39-49.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top