跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 10:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳亞凡
研究生(外文):Ya-Fan Wu
論文名稱:蚯蚓因鎘毒性所引起之病理反應與肌肉崩解相關探討
論文名稱(外文):Pathological Responses of Body Wall Collapse Induced by Cadmium in Earthworm Eisenia Andrei
指導教授:陳俊宏陳俊宏引用關係
口試委員:梁世雄易玲輝蕭崇德
口試日期:2011-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:55
中文關鍵詞:抗氧化劑蚯蚓氧化壓力肌肉細胞死亡
外文關鍵詞:cadmiumantioxidantearthwormoxidative stressROSmuscleapoptosisnecrosis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:416
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
重金屬鎘(Cd)由於在工業上普及的應用,加上沒有良好管制而隨著工廠排放釋出於環境中。鎘透過食物鏈在生物體內大量累積,因而造成生物體全面性的傷害。蚯蚓分佈廣泛且族群量又大,再加上能適當地偵測土壤中的有毒物質,中毒後便能透過異常的生理狀況即時地反映出來,所以蚯蚓對於土壤汙染能成為一種良好的生物偵測器。在實驗中用愛氏蚓(Eisenia andrei)來研究高劑量鎘毒性所造成的毒理反應。蚯蚓在鎘處理後,表現出全身性的病徵,包括表皮皺褶、充血、滲血、循環不佳等。除此之外,蚯蚓表現出一個特殊的病理現象─體壁不正常凹陷。在實驗中,利用切片技術,觀察到蚯蚓在鎘處理後所產生的體壁凹陷,是由肌肉組織大規模崩解所造成。另外,鎘處理之後,使蚯蚓組織中之H2O2濃度顯著增加,並且抗氧化酵素catalase的活性亦顯著降低。若在處裡鎘的蚯蚓同時處理各種抗氧化劑(EUK134、薑黃素、迷迭香酸、兒茶素、維他命C ),組織內的鎘累積量會大幅降低,而死亡率也會顯著降低,除此之外,所觀察到之病徵比例也大幅降低,表示抗氧化劑確實能保護蚯蚓抵抗鎘毒性。鎘處理後,實驗中將有發生體壁凹陷的蚯蚓分成兩個部分,一為體壁凹陷部分,另一部分為沒有凹陷部分,體壁凹陷部位的鎘累積量遠高於沒有凹陷的部分,並且大多數體壁凹陷處都集中在蚯蚓身體的後半部,由此可知,體壁凹陷對於蚯蚓來說可能具有解毒的意義。除此之外,實驗中透過DNA 片斷化證明,體壁凹陷處其細胞有第一型細胞計畫性死亡(apoptosis)與細胞凋亡(necrosis)的發生,代表鎘處裡之下,會造成蚯蚓組織發生細胞死亡。鎘透過氧化壓力或者直接累積在組織而造成組織傷害,透過抗氧化劑的處理能有效的降低鎘毒性,並大幅提升存活率。而體壁凹陷的則是透過肌肉細胞死亡,造成組織崩解,導致外觀上的凹陷。 

Cadmium (Cd), a heavy metal commonly exists in environmental soil. Bioaccumulation of Cd causes systemic toxicity to most animals in the world. Earthworms have been recognized as suitable bio-indicator to evaluate soil pollution after exposure to heavy metals. In this study, Eisenia andrei was used as the animal model to study Cd-induced toxic response. Cd accumulation and mortality showed a dose-dependent and time-dependent in earthworms. After Cd exposure, earthworms showed several pathological phenomena including skin wrinkle, partial hyperemia, blood effusion, bleaching and abnormal body wall collapse. Cd-exposed earthworms showed higher H2O2 concentration and lower catalase activity. In addition, earthworms treated with various antioxidants (EUK134, curcumin, rosmarinic acid, catechin, or vitamin C) decreased both Cd accumulation and mortality. Furthermore, the collapse part of earthworms showed higher Cd accumulation than the non-collapse part in Cd-exposed earthworm, and body wall collapse usually occurred at the posterior part of earthworm. Nevertheless, cells underwent both apoptosis and necrosis at collapsed part. This may inferr that body wall collapse represent a detoxification mechanism in Cd-exposed earthworms.

摘要 1
Abstract 2
Introduction 3
1.1 Cadmium 3
1.1.1 The properties of cadmium 4
1.1.2 The industrial applications of cadmium 4
1.2 The cadmium toxicity to human and to other organisms 4
1.3 The role of oxidative stress in cell 5
1.3.2. Cadmium induced ROS 7
1.3.3. Antioxidants 7
1.4 Introduction of programmed cell death 9
1.4.3 Necrosis 11
1.5 Earthworm 11
1.5.1. Earthworm as a bio-indicator of polluted environment 12
1.5.2 Introduction of Eisenia Andrei 12
1.6 Purpose of study 12
Materials and Methods 13
2.1 Animal collection and maintenance 13
2.2 Cadmium exposure 13
2.3 Antioxidant treatment 13
2.4 Measurement of cadmium bioaccumulation 14
2.5 Tissue extract preparation 14
2.6 Protein concentration assay 14
2.7 H2O2 concentration 14
2.8 Catalase activity 15
2.9 Plastic embedded section and H&E stain 15
2.10 DNA fragmentation assay 16
2.11 Immunoblotting 16
2.12 Statistical Analysis 17
Results 18
3.1 Cd toxicity to earthworms, E. andrei 18
3.2 Muscles degenerated at body wall collapse part 18
3.3 Cd induces cell proliferation on epidermis and intestinal epithelium 19
3.4 Accumulation in earthworm E. andrei 20
3.5 Oxidative stress in the Cd-treated earthworms 21
3.6 Antioxidants can rescue Cd-exposed earthworm from Cd toxicity 21
3.7 The antioxidants pre-treatment prevented Cd accumulation in earthworms 22
3.8 Cd induce cell undergo apoptosis and necrosis 22
Discussion 23
4.1 Systemic Cd toxicity 23
4.2 Body wall collapse in Cd-exposed earthworm 23
4.3 Cd-induced oxidative stress to cause cellular damages 24
4.4 Possible mechanism of Cd-induced muscle degeneration 25
4.5 Biphasic role on Cd-induced cell proliferation 27
4.6 Cd-induced cell apoptosis 28
4.7 Rhabdomylysis 29
References 31
Figure 38


Ahn, H.Y., Kim, C.H., and Ha, T.-S. (2010). Epigallocatechin-3-gallate Regulates NADPH Oxidase Expression in Human Umbilical Vein Endothelial Cells. The Korean Journal of Physiology and Pharmacology 14, 325.
Aktas, C., Kanter, M., Erboga, M., and Ozturk, S. (2011). Anti-apoptotic effects of curcumin on cadmium-induced apoptosis in rat testes. Toxicology and Industrial Health.
Amara, S., Garrel, C., Favier, A., Rhouma, K., Sakly, M., and Abdelmelek, H. (2009). Effect of static magnetic field and/or cadmium in the antioxidant enzymes activity in rat heart and skeletal muscle. General Physiology and Biophysics 28, 414-419.
Amberg, G.C., Earley, S., and Glapa, S.A. (2010). Local Regulation of Arterial L-Type Calcium Channels by Reactive Oxygen Species. Circulation Research 107, 1002-1010.
Andrews, D.W., and Leber, B. (2010). Closing in on the link between apoptosis and autophagy. F1000 Biology Reports 2.
Bagley, W.H., Yang, H., and Shah, K.H. (2007). Rhabdomyolysis. Internal and Emergency Medicine 2, 210-218.
Bayeva, M., and Ardehali, H. (2010). Mitochondrial Dysfunction and Oxidative Damage to Sarcomeric Proteins. Current Hypertension Reports 12, 426-432.
Bhattacharyya, M.H. (2009). Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures. Toxicology and Applied Pharmacology 238, 258-265.
Brady, C.A., and Attardi, L.D. (2010). p53 at a glance. Journal of Cell Science 123, 2527-2532.
Brzoska, M.M. (2004). Low-Level Exposure to Cadmium during the Lifetime Increases the Risk of Osteoporosis and Fractures of the Lumbar Spine in the Elderly: Studies on a Rat Model of Human Environmental Exposure. Toxicological Sciences 82, 468-477.
Cannino, G., Ferruggia, E., Luparello, C., and Rinaldi, A.M. (2009). Cadmium and mitochondria. Mitochondrion 9, 377-384.
Chakraborty, P.K., Lee, W.-K., Molitor, M., Wolff, N.A., and Thévenod, F. (2010). Cadmium induces Wnt signaling to upregulate proliferation and survival genes in sub-confluent kidney proximal tubule cells. Molecular Cancer 9, 102.
Chatterjee, P.K., Patel, N.S.A., Kvale, E.O., Brown, P.A.J., Stewart, K.N., Mota-Filipe, H., Sharpe, M.A., Di Paola, R., Cuzzocrea, S., and Thiemermann, C. (2004). EUK-134 Reduces Renal Dysfunction and Injury Caused by Oxidative and Nitrosative Stress of the Kidney. American Journal of Nephrology 24, 165-177.
Chen, F., Wang, F., Wu, F., Mao, W., Zhang, G., and Zhou, M. (2010). Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiology and Biochemistry 48, 663-672.
Chen, L., Liu, L., Luo, Y., and Huang, S. (2008). MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis. Journal of Neurochemistry 105, 251-261.
Cuypers, A., Plusquin, M., Remans, T., Jozefczak, M., Keunen, E., Gielen, H., Opdenakker, K., Nair, A.R., Munters, E., Artois, T.J., et al. (2010). Cadmium stress: an oxidative challenge. BioMetals 23, 927-940.
David Decraene, K.S., David Gan,w Tom Mammone,w Mary Matsui,w Daniel Maes,w Lieve, and Declercq, z.a.M.G. (2004). A Synthetic Superoxide Dismutase/Catalase Mimetic (EUK-134) Inhibits Membrane-Damage-Induced Activation of Mitogen-Activated Protein Kinase Pathways and Reduces p53 Accumulation in Ultraviolet B-Exposed Primary Human Keratinocytes. J Invest Dermatol 122:484 –491.
Edwards, J.R., and Prozialeck, W.C. (2009). Cadmium, diabetes and chronic kidney disease. Toxicology and Applied Pharmacology 238, 289-293.
Eybl, V. (2004). The effect of curcumin on cadmium-induced oxidative damage and trace elements level in the liver of rats and mice. Toxicology Letters 151, 79-85.
Fan, X., Hussien, R., and Brooks, G.A. (2010). H2O2-induced mitochondrial fragmentation in C2C12 myocytes. Free Radical Biology and Medicine 49, 1646-1654.
Fang, X., Huang, T., Zhu, Y., Yan, q., Chi, Y., Jiang, J.X., Wang, P., Matsue, H., Kitamura, M., and Yao, J. (2011). Connexin43 Hemichannels Contribute to Cadmium-induced Oxidative Stress and Cell Injury. Antioxidants & Redox Signaling, 110306091003087.
Fischer, E. (1977). The function of chloragosomes, the specific age-pigment granules of annelids. Exp Geront Vol. 12. pp. 69-74.
Fotakis, G., and Timbrell, J. (2006). Role of trace elements in cadmium chloride uptake in hepatoma cell lines. Toxicology Letters 164, 97-103.
Gagnon, E., Hontela, A., and Jumarie, C. (2007). Reciprocal inhibition of Cd and Ca uptake in isolated head kidney cells of rainbow trout (Oncorhynchus mykiss). Toxicology in Vitro 21, 1077-1086.
Ghasemzadeh, A., Jaafar, H.Z.E., and Rahmat, A. (2010). Synthesis of Phenolics and Flavonoids in Ginger (Zingiber officinale Roscoe) and Their Effects on Photosynthesis Rate. International Journal of Molecular Sciences 11, 4539-4555.
Giaginis, C., Gatzidou, E., and Theocharis, S. (2006). DNA repair systems as targets of cadmium toxicity. Toxicology and Applied Pharmacology 213, 282-290.
Gobe, G., and Crane, D. (2010). Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicology Letters 198, 49-55.
Golstein, P., and Kroemer, G. (2007). Cell death by necrosis: towards a molecular definition. Trends in Biochemical Sciences 32, 37-43.
Grivennikov, S.I., and Karin, M. (2011). Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Annals of the Rheumatic Diseases 70, i104-i108.
Henkler, F., Brinkmann, J., and Luch, A. (2010). The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics. Cancers 2, 376-396.
Higgins, C.P., Paesani, Z.J., Chalew, T.E.A., and Halden, R.U. (2009). Bioaccumulation of Triclocarban in Lumbriculus Variegatus. Environmental Toxicology and Chemistry 28, 2580.
Jiang, G., Duan, W., Xu, L., Song, S., Zhu, C., and Wu, L. (2009). Biphasic effect of cadmium on cell proliferation in human embryo lung fibroblast cells and its molecular mechanism. Toxicology in Vitro 23, 973-978.
Jomova, K., and Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology.
Joseph, P. (2009). Mechanisms of cadmium carcinogenesis☆. Toxicology and Applied Pharmacology 238, 272-279.
Kaisman-Elbaz, T., Sekler, I., Fishman, D., Karol, N., Forberg, M., Kahn, N., Hershfinkel, M., and Silverman, W.F. (2009). Cell death induced by zinc and cadmium is mediated by clusterin in cultured mouse seminiferous tubules. Journal of Cellular Physiology 220, 222-229.
Karabulut-Bulan, O., Bolkent, S., Yanardag, R., and Bilgin-Sokmen, B. (2008). The Role of Vitamin C, Vitamin E, and Selenium on Cadmium-Induced Renal Toxicity of Rats. Drug and Chemical Toxicology 31, 413-426.
Karayakar, F., Karaytug, S., and Sevgiler, Y. (2011). Antioxidative Effects of N-acetylcysteine, Lipoic Acid, Taurine, and Curcumin in the Muscle of Cyprinus carpio L. Exposed to Cadmium. Archives of Industrial Hygiene and Toxicology 62, 1-9.
Kerkhove, E., Pennemans, V., and Swennen, Q. (2010). Cadmium and transport of ions and substances across cell membranes and epithelia. BioMetals 23, 823-855.
Lamar, W.C.P.A.P.C. (1997). Cadmium (Cd 2+) disrupt E-cadherin-dependent cell-cell junctions in mock cells. In Vitro Cell Dev Biol 33:51~526.
Laudet, V., Gallo, M., Park, D., Luciani, D.S., Kida, K., Palmieri, F., Blacque, O.E., Johnson, J.D., and Riddle, D.L. (2011). MISC-1/OGC Links Mitochondrial Metabolism, Apoptosis and Insulin Secretion. PLoS ONE 6, e17827.
Lee, H., Bae, J.H., and Lee, S.-R. (2004). Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils. Journal of Neuroscience Research 77, 892-900.
Li, L., Zhou, D., Wang, P., and Luo, X. (2008). Subcellular distribution of Cd and Pb in earthworm Eisenia fetida as affected by Ca2+ ions and Cd–Pb interaction☆. Ecotoxicology and Environmental Safety 71, 632-637.
Li, R., Yuan, C., Dong, C., Shuang, S., and Choi, M.M.F. (2011). In vivo antioxidative effect of isoquercitrin on cadmium-induced oxidative damage to mouse liver and kidney. Naunyn-Schmiedeberg''s Archives of Pharmacology.
Liu, J., Qu, W., and Kadiiska, M.B. (2009). Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicology and Applied Pharmacology 238, 209-214.
Lourenço, J.I., Pereira, R.O., Silva, A.C., Morgado, J.M., Carvalho, F.P., Oliveira, J.M., Malta, M.P., Paiva, A.A., Mendo, S.A., and Gonçalves, F.J. (2011). Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides. Journal of Hazardous Materials 186, 788-795.
Manna, P., Sinha, M., and Sil, P.C. (2008). Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids 36, 417-428.
Martelli, A., Rousselet, E., Dycke, C., Bouron, A., and Moulis, J.M. (2006). Cadmium toxicity in animal cells by interference with essential metals. Biochimie 88, 1807-1814.
Martin, P., and Pognonec, P. (2010). ERK and cell death: cadmium toxicity, sustained ERK activation and cell death. FEBS Journal 277, 39-46.
Massicotte, R. (2004). Immunotoxicological response of the earthworm Lumbricus terrestris following exposure to cement kiln dusts. Ecotoxicology and Environmental Safety 59, 10-16.
Matsumoto, K., Yamada, H., Takuma, N., Niino, H., and Sagesaka, Y.M. (2011). Effects of Green Tea Catechins and Theanine on Preventing Influenza Infection among Healthcare Workers: A Randomized Controlled Trial. BMC Complementary and Alternative Medicine 11, 15.
Maycotte, P., Guemez-Gamboa, A., and Moran, J. (2010). Apoptosis and autophagy in rat cerebellar granule neuron death: Role of reactive oxygen species. Journal of Neuroscience Research 88, 73-85.
Monobe, M., Ema, K., Tokuda, Y., and Maeda-Yamamoto, M. (2010). Effect on the Epigallocatechin Gallate/Epigallocatechin Ratio in a Green Tea (Camellia sinensis L.) Extract of Different Extraction Temperatures and Its Effect on IgA Production in Mice. Bioscience, Biotechnology, and Biochemistry 74, 2501-2503.
More, A.T.V.a.N.K. (1973). Lysosomal acid hydrolases in the chloragogen cells of earthworms. Comp Biochm Physial Vol. 45A, pp. 607 to 635.
Mosad, S.M., Ghanem, A.A., El-Fallal, H.M., El-Kannishy, A.M., El Baiomy, A.A., Al–Diasty, A.M., and Arafa, L.F. (2010). Lens Cadmium, Lead, and Serum Vitamins C, E, and Beta Carotene in Cataractous Smoking Patients. Current Eye Research 35, 23-30.
Moulis, J.-M. (2010). Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. BioMetals 23, 877-896.
Nawrot, T.S., Staessen, J.A., Roels, H.A., Munters, E., Cuypers, A., Richart, T., Ruttens, A., Smeets, K., Clijsters, H., and Vangronsveld, J. (2010). Cadmium exposure in the population: from health risks to strategies of prevention. BioMetals 23, 769-782.
Nordberg, G.F. (2009). Historical perspectives on cadmium toxicology. Toxicology and Applied Pharmacology 238, 192-200.
Osakada, F. (2004). Serofendic Acid, a Sulfur-Containing Diterpenoid Derived from Fetal Calf Serum, Attenuates Reactive Oxygen Species-Induced Oxidative Stress in Cultured Striatal Neurons. Journal of Pharmacology and Experimental Therapeutics 311, 51-59.
Pan, J., Plant, J.A., Voulvoulis, N., Oates, C.J., and Ihlenfeld, C. (2009). Cadmium levels in Europe: implications for human health. Environmental Geochemistry and Health 32, 1-12.
Paris-Palacios, S., Mosleh, Y.Y., Almohamad, M., Delahaut, L., Conrad, A., Arnoult, F., and Biagianti-Risbourg, S. (2010). Toxic effects and bioaccumulation of the herbicide isoproturon in Tubifex tubifex (Oligocheate, Tubificidae): A study of significance of autotomy and its utility as a biomarker. Aquatic Toxicology 98, 8-14.
Pearson, C. (2001). E-Cadherin, β -Catenin and cadmium carcinogenesis. Medical Hypotheses 56, 573-581.
Prozialeck, W.C., and Edwards, J.R. (2010). Early biomarkers of cadmium exposure and nephrotoxicity. BioMetals 23, 793-809.
Prozialeck, W.C., Edwards, J.R., Lamar, P.C., Liu, J., Vaidya, V.S., and Bonventre, J.V. (2009). Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury. Toxicology and Applied Pharmacology 238, 306-314.
Rana, S. (2008). Metals and apoptosis: Recent developments. Journal of Trace Elements in Medicine and Biology 22, 262-284.
Ratner, A., Carlisle, E.M., Poroyko, V., Caplan, M.S., Alverdy, J.A., and Liu, D. (2011). Gram Negative Bacteria Are Associated with the Early Stages of Necrotizing Enterocolitis. PLoS ONE 6, e18084.
Ritchlin, C.T. (2010). Therapeutic considerations in spondyloarthritis patients who fail tumour necrosis factor antagonists. Best Practice & Research Clinical Rheumatology 24, 683-692.
Ruiz, E., Alonso-Azcárate, J., and Rodríguez, L. (2011). Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley. Environmental Pollution 159, 722-728.
ŞAhİN Kavakli, H. (2011). Antioxidant effects of curcumin in spinal cord injury in rats. Turkish Journal of Trauma and Emergency Surgery 17, 14-18.
Samai, M., Sharpe, M.A., Gard, P.R., and Chatterjee, P.K. (2007). Comparison of the effects of the superoxide dismutase mimetics EUK-134 and tempol on paraquat-induced nephrotoxicity. Free Radical Biology and Medicine 43, 528-534.
Sanbongi, C. (2003). Rosmarinic acid inhibits lung injury induced by diesel exhaust particles. Free Radical Biology and Medicine 34, 1060-1069.
Shiu, S.-H., Li, Y., Wang, N., Perkins, E.J., Zhang, C., and Gong, P. (2010). Identification and Optimization of Classifier Genes from Multi-Class Earthworm Microarray Dataset. PLoS ONE 5, e13715.
Siu, E.R., Mruk, D.D., Porto, C.S., and Cheng, C.Y. (2009). Cadmium-induced testicular injury. Toxicology and Applied Pharmacology 238, 240-249.
Son, Y.O., Lee, J.C., Hitron, J.A., Pan, J., Zhang, Z., and Shi, X. (2009). Cadmium Induces Intracellular Ca2+- and H2O2-Dependent Apoptosis through JNK- and p53-Mediated Pathways in Skin Epidermal Cell line. Toxicological Sciences 113, 127-137.
Spurgeon, D. (2004). Toxicological, cellular and gene expression responses in earthworms exposed to copper and cadmium. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 138, 11-21.
Taylor, G.S., Mautner, J., and Münz, C. (2011). Autophagy in herpesvirus immune control and immune escape. Herpesviridae 2, 2.
Thévenod, F. (2009). Cadmium and cellular signaling cascades: To be or not to be? Toxicology and Applied Pharmacology 238, 221-239.
Thompson, J., and Bannigan, J. (2008). Cadmium: Toxic effects on the reproductive system and the embryo. Reproductive Toxicology 25, 304-315.
Tsukahara, T.E.Æ.T. (2003). No clear-cut evidence for cadmium-induced renal tubular dysfunction among over 10,000 women in the Japanese general population: a nationwide large-scale survey. Int Arch Occup Environ Health 76: 186–196.
Uzlová, R., Tumová, J., Vlková, A., Hanzlíková, I., Roth, Z., Rucki, M., and Tichý, M. (2010). Extrapolation of toxic indices among test objects. Interdisciplinary Toxicology 3, 137-139.
Valko, M., Rhodes, C., Moncol, J., Izakovic, M., and Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions 160, 1-40.
Van Gestel, C.A.M., Ortiz, M.D., Borgman, E., and Verweij, R.A. (2011). The bioaccumulation of Molybdenum in the earthworm Eisenia andrei: Influence of soil properties and ageing. Chemosphere 82, 1614-1619.
Vesey, D.A. (2010). Transport pathways for cadmium in the intestine and kidney proximal tubule: Focus on the interaction with essential metals. Toxicology Letters 198, 13-19.
Vidal, D.E., and Horne, A.J. (2003). Mercury Toxicity in the Aquatic Oligochaete Sparganophilus pearsei II: Autotomy as a Novel Form of Protection. Archives of Environmental Contamination and Toxicology 45, 462-467.
Wang, H., Xiao, L., and Kazanietz, M.G. (2011). p23/Tmp21 associates with protein kinase C delta (PKC ) and modulates its apoptotic function. Journal of Biological Chemistry.
Wang, L., Cao, J., Chen, D., Liu, X., Lu, H., and Liu, Z. (2008a). Role of Oxidative Stress, Apoptosis, and Intracellular Homeostasis in Primary Cultures of Rat Proximal Tubular Cells Exposed to Cadmium. Biological Trace Element Research 127, 53-68.
Wang, S.H., Shih, Y.L., Ko, W.C., Wei, Y.H., and Shih, C.M. (2008b). Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cellular and Molecular Life Sciences 65, 3640-3652.
Wang, S.H., Shih, Y.L., Kuo, T.C., Ko, W.C., and Shih, C.M. (2009). Cadmium Toxicity toward Autophagy through ROS-Activated GSK-3 in Mesangial Cells. Toxicological Sciences 108, 124-131.
Wu, H.-H., Hsiao, T.-Y., Chien, C.-T., and Lai, M.-K. (2009). Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat. Journal of Biomedical Science 16, 19.
Xie, Z., Zhang, Y., Li, A., Li, P., Ji, W., and Huang, D. (2010). Cd-induced apoptosis was mediated by the release of Ca2+ from intracellular Ca storage. Toxicology Letters 192, 115-118.
Xu, B., Xu, Z.-F., Deng, Y., and Yang, J.-H. (2010). Protective effects of Chlorpromazine and Verapamil against cadmium-induced kidney damage in vivo. Experimental and Toxicologic Pathology 62, 27-34.
Yang, C.-S., Tzou, B.-C., Liu, Y.-P., Tsai, M.-J., Shyue, S.-K., and Tzeng, S.-F. (2008). Inhibition of cadmium-induced oxidative injury in rat primary astrocytes by the addition of antioxidants and the reduction of intracellular calcium. Journal of Cellular Biochemistry 103, 825-834.
Yano, C., and Marcondes, M. (2005). Cadmium chloride-induced oxidative stress in skeletal muscle cells in vitro. Free Radical Biology and Medicine 39, 1378-1384.
Yazdanparast, M.M.a.R. (2010). Modulation of H2O2-Induced Mitogen-Activated Protein Kinases Activation and Cell Death in SK-N-MC Cells by EUK134, a Salen Derivative. Basic & Clinical Pharmacology & Toxicology 108, 378–384.
Zeitz, O., Schlichting, L., Richard, G., and Strauß, O. (2006). Lack of antioxidative properties of vitamin C and pyruvate in cultured retinal pigment epithelial cells. Graefe''s Archive for Clinical and Experimental Ophthalmology 245, 276-281.
Zhang, L. (2004). Expression and characterization of ARSP1 from Eisenia fetida. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 137, 115-122.
Zhang, Z.S., Zheng, D.M., Wang, Q.C., and Lv, X.G. (2009). Bioaccumulation of Total and Methyl Mercury in Three Earthworm Species (Drawida sp., Allolobophora sp., and Limnodrilus sp.). Bulletin of Environmental Contamination and Toxicology 83, 937-942.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊