跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁睿妤
研究生(外文):Jui-Yu Weng
論文名稱:IMASS:智慧型微網誌自動分析及摘要系統
論文名稱(外文):IMASS: An Intelligent Microblog Analysis and Summarization System
指導教授:林守德林守德引用關係
口試委員:陳信希鄭卜壬劉昭麟張俊盛
口試日期:2011-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:34
中文關鍵詞:自動摘要微網誌自然語言處理監督式學習系統整合
外文關鍵詞:Automatic SummarizationMicroblogNatural Language ProcessingSupervised LeaningSystem Integration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個自動摘要系統,針對每一則微網誌上的訊息及回應產生簡明易讀的摘要。此系統的目的在於幫助微網誌使用者可以在大量的網路訊息中,有效率地擷取到重要且有意義的資訊。它採用了兩階段的摘要架構:第一個階段進行訊息的分類。每一則訊息都會被分為「疑問」、「連結分享」、「連結討論」以及「閒聊」等四種類型;第二個階段則是針對該訊息在上個階段被分配到的類別,採用適合該類的摘要策略及呈現方式。我們提出的策略共有「意見分析」、「回應分群」以及「回應相關度偵測」等三種。本論文在處理微網誌摘要的問題上,提出了一個不同於傳統文件摘要技術的觀點:透過不同系統之間的整合,電腦可以有能力產生出合於使用者目的之摘要,而不僅是訊息的過濾與壓縮。

This paper presents a system to summarize a microblog post and its responses with the goal to provide readers a more constructive and concise set of information for efficient digestion. We introduce a novel two-phase summarization scheme. In the first phase, the post plus its responses are classified into four categories based on the intention, Interrogation, URL-Sharing, URL-Discussion and Chat. For each type of post, in the second phase, we exploit different strategies, including Opinion Analysis, Response Group Clustering, and Response Relevancy Detection, to summarize and highlight critical information to display. This system provides an alternative thinking about machine-summarization: by utilizing AI approaches, computers are capable of constructing deeper and more user-friendly abstraction.

口試委員審定書 i
Acknowledgements ii
摘要 iii
Abstract iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
Chapter 2 Summarization Framework and Experiments 5
2.1 Plurk 5
2.2 Summarization Framework 6
2.2.1 Post Intention Classification 10
2.2.2 Opinion Analysis 14
2.2.3 Response Group Clustering 15
2.2.4 Response Relevance Detection 20
Chapter 3 System Demonstration 23
Chapter 4 Related Work 28
Chapter 5 Conclusion 31
References 32


[1]Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[2]Mei-Yu Chen, Hsin-Ni Lin, Chang-An Shih, Yen-Ching Hsu, Pei-Yu Hsu, and Shu-Kai Hsieh. 2010. Classifying mood in plurks. In Proceedings of the 22nd Conference on Computational Linguistics and Speech Processing (ROCLING’10). pp. 172-183.
[3]Dipanjan Das and Andre F.T. Martins. 2007. A Survey on Automatic Text Summarization. Literature Survey for the Language and Statistics II Course at CMU.
[4]Helen Kwong and Neil Yorke-Smith. 2009. Detection of imperative and declarative question-answer pairs in email conversations. In Proceedings of the 21st international jont conference on Artifical intelligence (IJCAI''09). pp.1519-1524.
[5]Chuanhan Liu, Yongcheng Wang, and Fei Zheng. 2006. Automatic Text Summarization for Dialogue Style. In Proceedings of the IEEE International Conference on Information Acquisition (ICIA’06). pp. 274-278.
[6]Alexander Pak and Patrick Paroubek. 2010. Twitter as a Corpus for Sentiment Analysis and Opinion Mining. In Proceedings of International Conference on Language Resources and Evaluation (LREC’10). pp. 1320–1326.
[7]Bo Pang and Lillian Lee. 2004. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL’04). pp. 271-278.
[8]Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2): 1-135.
[9]Dragomir R. Radev, Eduard Hovy, and Kathleen McKeown. 2002. Introduction to the special issue on summarization. Computational Linguistics. pp. 399-408.
[10]Satoshi Sekine and Chikashi Nobata. 2003. A Survey for Multi-Document Summarization. In Proceedings of North American Chapter of the Association for Computational Linguistics - Human Language Technologies (NAACL-HLT’03) on Text Summarization Workshop. pp.65-72.
[11]Beaux Sharifi, Mark A. Hutton, and Jugal Kalita. 2010. Summarizing microblogs Automatically. In Proceedings of the Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT’10). pp.685-688.
[12]Beaux Sharifi, Mark A. Hutton, and Jugal Kalita. 2010. Experiments in Microblog Summarization. In Proceedings of 2010 IEEE Second International Conference on Social Computing (SocialCom’10). pp.49-56.
[13]Lokesh Shrestha and Kathleen McKeown. 2004. Detection of Question-Answer Pairs in Email Conversations. In Proceedings of the 23rd International Conference on Computational Linguistics (COLING’04). pp. 889-895.
[14]Klaus Zechner. 2001. Automatic Generation of Concise Summaries of Spoken Dialogues in Unrestricted Domains. In Proceedings of the 24th ACM-SIGIR International Conference on Research and Development in Information Retrieval. pp. 199-207.
[15]Klaus Zechner. 2002. Automatic Summarization of Open-Domain Multiparty Dialogues in Diverse Genres. Computational Linguistics, 28(4): 447-485.
[16]Liang Zhou and Eduard Hovy. 2005. Digesting virtual geek culture: The summarization of technical internet relay chats, in Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05). pp. 298-305.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top