跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭世傑
研究生(外文):Shih-Chieh Hsiao
論文名稱:以多通道螢光光譜影像系統與螢光指標探討甘藍苗水份逆境之研究
論文名稱(外文):The Development of Multi-Channel Fluorescence Spectral Imaging System and Fluorescence Indices for Study of Water Stress of Cabbage Seedlings
指導教授:陳世銘陳世銘引用關係
指導教授(外文):Suming Chen
口試日期:2011-07-07
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:56
中文關鍵詞:螢光影像螢光指標水份逆境苗株光合作用
外文關鍵詞:Fluorescence imagingFluorescence indexWater stressSeedlingsPhotosynthesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣的蔬菜育苗主流為穴盤育苗,由於育苗期間的水份管理與移植後的成長息息相關。為了確保苗株的品質,提高苗株移植後的存活率及產量,對於穴盤苗株進行水份狀態的偵測有其必要。植物生長過程中,容易遭受包括水份等不同逆境的影響,導致生長受到干擾,使光合作用產生變化,造成植物螢光表現的變異。因為由植物葉綠素螢光之反應,能探討植物遭遇逆境的狀況,故可利用以偵測苗株之水份逆境,藉以管理蔬菜育苗時之水份供應。
本研究使用八組藍光LED之燈組作為螢光激發光源,四部攝影機組成之同步多通道影像擷取系統及以鋁擠型、黑色布幔製成之暗室設備,並利用FXGPWIN、Visual C++、Matlab等軟體撰寫系統之控制及分析程式,開發一套多通道螢光光譜影像檢測系統。系統選用460 nm、690 nm、720 nm及740 nm四個波長之濾光鏡,擷取於此四種波長下之不同水份逆境處理之甘藍苗株葉片的螢光影像,並量測葉片水份含量及水份潛勢,以探討其與螢光指標之關係。
研究所開發之多通道螢光光譜影像檢測系統,能有效量測苗株葉片之螢光影像,並建立葉綠素螢光淬息曲線,以求得最大螢光值Fm與穩態螢光值Fs。同時,本研究也建立一個動態螢光指標(dynamic fluorescence index, DFI),僅需170秒就能完成該指標的量測,大大縮短傳統上之量測時間。分析結果得知,使用720 nm波長之DFI螢光指標預測甘藍苗株葉片之水份潛勢更優於使用傳統之Rfd螢光指標,DFI及Rfd對水份潛勢之相關係數r各為0.944及0.795,標準誤差SEE各為0.286及0.525 Mpa。在去除高水份逆境之樣本後,DFI對水份潛勢之相關係數僅微微降低至0.861,不同於Rfd的則降低許多,其r由0.795降至0.416,可顯示DFI在植物遭遇較低水份逆境時仍具有高的預測能力,因此DFI對水份之逆境具有敏感性,且能應用於逆境尚未造成傷害時之檢測,可防範水份逆境於未然。
Most of vegetable seedling nurseries in Taiwan adopt plug tray system for seedlings production. The proper water management during the seedling nursery is important to the growth after transplanting. In order to ensure the quality of the seedlings and to improve the production after transplanting, the water status of the plug seedlings is necessary to be monitored and detected. Several kinds of stresses such as water stress may affect the growth of plants due to the variation of photosynthesis and result in the changes of fluorescence reaction. The status of plants under water stress can be assessed according to the response of chlorophyll fluorescence. Therefore, the technology which can measure water stress of plants is needed for irrigation mangement during seedling growth.
In this study, a multi-channel fluorescence spectral imaging system was developed, which consisted of eight sets of blue-LED fluorescence inducing light, a multi-spectral imaging system with four CCD cameras, and a dark chamber. The control and analysis programs of the system were programmed by using FXGPWIN, Visual C++, and MATLAB. Filters with four wavelengths, 460 nm, 690 nm, 720 nm, and 740 nm were used to detect the fluorescence emission spectra of the leaves of cabbage seedlings under various water stresses. After measuring water contents and water potential of the leaves, the relationship among them and the indices of fluorescence can be found.
The multi-channel fluorescence spectral imaging system was proofed that can effectively detect fluorescence images of seedling leaves, and then get maximum fluorescence (Fm) and steady-state fluorescence (Fs) from the fluorescence quenching curve of them. Besides, a novel fluorescence index (dynamic fluorescence index, DFI) was developed in this study. With the proposed DFI, highly correlated data (r = 0.944) and low standard error of estimate (SEE = 0.286 MPa) to the water potential values can be obtained from a single channel around 720 nm and with shorter imaging times (170 seconds). The coefficient of correlation reduced to 0.861 after eliminating samples with high water stresses, indicating that DFI still has high predictability under condition of low water stress to plants.
目 錄
口試委員會審定書 i
誌 謝 ii
摘 要 iv
Abstract v
目 錄 vii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 2
第二章 同步多通道螢光光譜影像系統建立與測試 4
2.1 前言 4
2.2 多通道螢光光譜影像系統之建立 8
2.2.1 系統設計 8
2.2.1.1 暗室 9
2.2.1.2 螢光激發光源控制系統 9
2.2.1.3 同步多通道螢光光譜影像擷取系統 11
2.2.2 系統操作 12
2.3 螢光波段的選取及影像處理與分析 13
2.3.1 螢光波段的選取 13
2.3.2 CCD感測光學特性 15
2.3.3 影像處理與分析 16
2.4 穴盤苗株螢光光譜影像量測 18
2.4.1 樣本準備 18
2.4.2 儀器設備 18
2.4.3 實驗方法 19
2.5 結果與討論 19
2.5.1 初秋甘藍苗株螢光影像分析 19
2.5.2 初秋甘藍苗株螢光淬息曲線圖分析 20
2.6 結論 21
第三章 利用傳統螢光指標探討甘藍穴盤苗株含水率之關係 22
3.1 前言 22
3.2 材料與方法 24
3.2.1 樣本準備 24
3.2.2 儀器設備 24
3.2.3 實驗方法 25
3.2.3.1 螢光光譜影像取像 25
3.2.3.2 螢光光譜影像處理 25
3.2.3.3 樣本含水率分析 25
3.3 結果與討論 26
3.3.1 缺水處理與含水率的比較 26
3.3.2 含水率與螢光強度的關係 27
3.3.3 含水率與傳統螢光指標之探討 28
3.4 結論 30
第四章 以藍光LED螢光影像系統之動態螢光指標評估植物苗株之水份逆境 31
4.1 前言 31
4.2 材料與方法 33
4.2.1 樣本準備 33
4.2.2 螢光影像系統 33
4.2.3 螢光影像擷取與分析 35
4.2.4 水份潛勢的量測 36
4.3 結果與討論 37
4.3.1螢光影像波段的選取 37
4.3.2 取像和資料處理 38
4.3.3 植物逆境的水份潛勢和螢光淬熄 39
4.3.4 動態螢光指標(DFI)之建立 41
4.4 結論 45
第五章 總結與建議 46
5.1 總結 46
5.2 建議 47
參考文獻 48

圖目錄
圖2-1 綠色植物進行光合作用能量傳遞示意圖 5
圖2-2 同步多光譜螢光影像系統示意圖 9
圖2-3 同步多光譜螢光影像系統 10
圖2-4 多光譜螢光影像擷取流程圖 12
圖2-5 光譜輻射分析儀 14
圖2-6 不同葉綠素含量之甘藍苗螢光光譜 15
圖2-7 光學攝影機之感測器響應強度分佈圖 16
圖2-8 多光譜螢光影像計算分析流程圖 17
圖2-9 二維影像中單葉之螢光強度分佈圖 18
圖2-10由螢光影像強度計算之螢光淬息曲線與時間關係圖 20
圖2-11 同步多光譜螢光影像系統相同樣本不同波長螢光淬息曲線與時間關係圖 21
圖3-1 各處理組之螢光影像平均強度時間關係圖及對應之影像 27
圖3-2 螢光影影像淬息曲線上Fm與Fs示意圖 29
圖3-3 螢光指標(Fm/Fs及Rfd)與甘藍苗株含水率線性迴歸分析圖 30
圖4-1 多通道螢光影像系統(MSFIS)示意圖 35
圖4-2 甘藍葉片螢光影像和淬息曲線 36
圖4-3 水份潛勢測試儀 37
圖4-4 使用C-52樣品水份測試箱量測甘藍苗葉片樣本之水份潛勢 37
圖4-5 實驗組(EA, EB, EC, ED)與對照組(RF)之螢光影像強度與時間關係圖及相對應之Fm、Fs螢光影像 40
圖4-6 不同處理組之螢光淬息曲線經過正規化後螢光強度與時間關係圖 41
圖4-7 Fe分別在第100秒及第300秒的動態螢光指標(DFI)示意圖 42
圖4-8 動態螢光指標(DFI)在170秒示意圖 43
圖4-9 三個不同波段之葉片水份潛勢與動態螢光指標(DFI)之關係 43
圖4-10 甘藍苗株葉片水份潛勢與傳統指標Rfd及動態螢光指標DFI之關係圖 44

表目錄
表3-1甘藍穴盤苗生長管理與缺水處理日程表 24
表3-2不同實驗組與對照組之甘藍苗葉片平均水份含水率 26
表4-1苗株水份逆境處理後之水份潛勢數據 40
表4-2 Rfd 和 DFI 指標之相關係數和預測標準差對照表 45
參考文獻
林安秋。1984。作物之光合作用。台北:臺灣商務印書館
易希道。1999。植物生理學。台北:正中書局。
廖玉琬、徐善德、謝永祥、吳弘達、鍾仁彬。1999。植物生理學。台北:啟英文化事業有限公司。
蕭世傑、陳世銘、楊宜璋、陳加增、莊永坤、陳毓良。2010。同步多通道螢光光譜影像系統建立及其檢測環境之研究。農業機械學刊 19(4): 93-108。
Agati, G., C. Galardi, E. Gravano, A. Romani, and M. Tattini. 2002. Flavonoid distribution in tissues of phillyrea latifolia L. leaves as estimated by microspectrofluorometry and multispectral fluorescence microimaging. Photochemistry Photobiology 76 (3), 350-360.
Babani, F., H. K. Lichtenthaler, and P. Richter. 1996. Changes of chlorophyll fluorescence signatures during greening of etiolated barley seedlings as measured with the CCD-OMA fluorometer. Plant Physiology 148, 471-477.
Babani, F., and H. K. Lichtenthaler. 1996. Light-induced and age-dependent development of chloroplasts in Etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios. Plant Physiology 148, 555-566.
Baker, N. R., K. Oxborough, T. Lawson, and J. I. L. Morison. 2001. High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves. Journal of Experimental Botany 52 (356), 615-621.
Barbagallo, R., K. Oxborough, K. E. Pallett, and N. R. Baker. 2003. Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiology 132:485-493.
Bolhar-Nordenkampf, H. R., and G.. Oquist. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. In Photosynthesis and Production in a Changing Environment: A Field and Laboratory Manual. 193-206.
Buschmann, C., J. Schweiger, H. K. Lichtenthaler, and P. Richter. 1996. Application of the Karlsruhe CCD-OMA LIDAR-fluorosensor in stress detection of plants. Journal of Plant Physiology 148 (5), 548-554.
Buschmann, C. 2007. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynthesis Research 92, 261-271.
Ceccato, P., S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Gregoire. 2001. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 77(1): 22-33.
Cervantes-Martinez, J., R. Flores-Hernandez, B. Rodriguez-Garay, and F. Santacruz-Ruvalcaba. 2002. Detection of bacterial infection of agave plants by laser-induced fluorescence. Appl. Optics 41(13): 2541-2545.
Chaerle, L., and D. V. D. Straeten. 2000. Imaging techniques and the early detection of plant stress. Trends in Plant Science 5(11): 495-501.
Chaerle, L., S. Lenk, I. Leinonen, H. G.. Jones, D.Van Der Straeten, and C. Buschmann. 2009. Multi-sensor plant imaging: towards the development of a stress-catalogue. Biotechnology Journal 4, 1152-1167.
Chappelle, E. W., F. M. Wood, J. E. Mcmurtrey, and W. W. Newcourt. 1984a. Laser-induced fluorescence of green plants. 1: a technique for the remote detection of plant stress and species differentiation. Appl. Optics 23:134-138.
Chappelle, E. W., F. M. Wood, J. E. Mcmurtrey, and W. W. Newcourt. 1984b. Laser-induced fluorescence of green plants. 2: LIF caused by nutrient deficiencies in corn. Appl. Optics 23:139-142.
Chappelle, E. W., F. M. Wood, J. E. Mcmurtrey, and W. W. Newcourt. 1985. Laser-induced fluorescence of green plants. 3: LIF spectral signatures of five major plant types. Appl. Optics 24:74-80.
Chappelle, E. W., M. Kim, and J. E. McMurtrey. 1991. Identification of the pigment responsible for the blue fluorescence band in the laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis. Remote Sensing of Environment 36 (3), 213-218.
Choné, X., C. Van Leeuwen, D. Dubourdieu, and J. P. Gaudillére. 2001. Stem water potential is a sensitive Indicator of grapevine water status. Ann. Bot. (London) 87 (4), 477-483.
Conroy, J. P., R. M. Smillie, M. Küppers, D. I. Bevege, and E. W. Barlow. 1986. Chlorophyll aFluorescence and photosynthetic and growth responses of Pinus radiate to phosphorus deficiency, drought, stress, and high CO2. J. Plant Physiol. 81: 423-429.
Cornic, G. 2000. Drought stress inhibits photosynthesis by decreasing stomatal aperture–not by affecting ATP synthesis. Trends in Plant Science 5 (5), 187-188.
Corp, L. A., J. E. McMurtrey, E. W. Chappelle, M. S. Kim, and C. S. T. Daughtry. 1996. Optimal fluorescence excitation wavelengths for detection of stress in vegetation. IEEE, IGARSS Digest: 1812-1815.
Corp, L. A., E. W. Chappelle, J. E. McMurtrey, C. L. Mulchi, C. S. T. Daughtry, and M. S. Kim. 2000. Advances in fluorescence sensing systems for the remote assessment of nitrogen supply in field corn. IEEE, IGARSS Digest :351-353.
Corp, L. A., E. M. Middleton, J. E. McMurtrey, P. K. E. Campbell, M. S. E. W. Kim, and L. M. B. Chappelle. 2002. Fluorescence imaging techniques for monitoring vegetation. IEEE, IGARSS Digest: 3056-3058.
Costa, E. S., R. Bressan-smith, J. G. Oliverira, and E. Campostrini. 2003. Chlorophyll a fluorescence analysis in response to excitation irradiance in bean plants (Phaseolus vulgaris L. and Vigna unguiculata L. Walp) submitted to high temperature stress. Photosynthetica 41(1):77-82.
Daley, P. F. 1995. Chlorophyll fluorescence analysis and imaging in plant stress and disease. Canadian Journal of Plant Pathology 17 (2), 167–173.
Djekoun, A., and C. Planchon. 1991. Tolerance to low leaf water potential in soybean genotypes. Euphytica 55, 247-253.
Flexas, J., J. M. Briantais, Z. Cerovic, H. Medrano, and I. Moya. 2000. Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: A new remote sensing system. Remote Sensing of Environment 73 (3), 283-297.
Govindjee, D. W. J. S., D. C. Fork, and P. A. Armond. 1981. Chlorophyll a fluorescence transient as an indicator of water potential of leaves. Plant Science Letters 20, 191-194.
Gray, G. R., B. J. Hope, X. Qin, B. G. Taylor, and C. L. Whitehead. 2003. The characterization of photoinhibition and recovery during cold acclimation in Arabidopsis thaliana using chlorophyll fluorescence imaging. Physiologia Plantarum 119:365-375.
Havaux, M., and R. Lannoye. 1983. Chlorophyll fluorescence induction: A sensitive indicator of water stress in maize plants. Irrigation Science 4 (2), 147-151.
Heisel, F., M. Sowinska, J. A. Miehe, M. Lang, and H. K. Lichtenthaler. 1996. Detection of nutrient deficiencies of maize by laser induced fluorescence imaging. Plant Physiology 148 (5), 622-631.
Herppich, W. B., and D. J. Willert. 1995. Dynamic changes in leaf bulk water relations during stomatal oscillations in mangrove species. Continuous analysis using a dewpoint hygrometer. Physiology Plantarum 94 (3), 479-485.
Hsiao, S. C., S. Chen, and C. T. Chen. 2002. Hyper-spectra and fluorescence analyses of the chlorophyll content in vegetable. In: Proceedings of International Symposium on Automation and Mechatronics of Agricultural and Bioproduction Systems. National Chiayi University, Chiayi, Taiwan, pp. 669–673.
Hsiao, S. C., S. Chen, I. C. Yang, C. T. Chen, C. Y. Tsai, Y. K. Chuang, F. J. Wang, T. S. Lin, and Y. M. Lo. 2010. Evaluation of plant seedling water stress using dynamic fluorescence index with blue LED-based fluorescence imaging. Computer and Electronics in Agriculture 72: 127-133.
Hunt, E. R. J., B. N. Rock, and P. S. Nobel. 1987. Measurement of leaf relative water content by infrared reflectance. Remote Sensing of Environment 22 (3), 429-435
Hunt, E. R. J., and B. N. Rock. 1989. Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sensing of Environment 30 (1), 43-54.
Jackson, R. D., S. B. Idso, R. J. Reginato, and P. J. J. Pinter. 1981. Canopy temperature as a crop water stress indicator. Water Resource Research 17 (4), 1133-1138.
Jarvis, P. G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 273 (927), 593-610.
Kautsky, H., and A. Hirsch. 1931. Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften. 19, 964-964.
Kerizek, D. T., E. M. Middleton, R. K. Sandhu, and M. S. Kim. 2001. Evaluating UV-B effects and EDU protection in cucumber leaves using fluorescence images and fluorescence emission spectra. Journal of Plant Physiology 158 (1), 41-53.
Kim, M. S., J. E. McMurtrey, C. L. Mulchi, C. S. T. Daughtry, E. W. Chappelle, and Y. R. Chen. 2001a. Stead-state multispectral fluorescence imaging system for plant leaves. Applied Optics. 40(1):157-166.
Kim, M. S., Y. R. Chen, and P. M. Mehl. 2001b. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the ASAE 44 (3), 721-729.
Kim, M. S., A. M. Lefcour, Y. R. Chen, I. Kim, D. E. Chan, and K. Chao. 2002. Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part II. Application of hyperspectral fluorescence imaging. Transactions of the ASAE 45 (6), 2039-2047.
Kim, M. S., A. M. Lefcourt, and Y. R. Chen. 2003. Multispectral laser-induced fluorescence imaging system for large biological samples. Applied Optics 42 (19), 3927-3933.
Kocsanyi, L., M. Haitz, and H. K. Lichtenthaler. 1988. Measurement of the laser-induced chlorophyll fluorescence kinetics using a fast acoustooptic device. Applications of Chlorophyll Fluorescence. H. K. Lichtenthaler, Kluwer Academic Publishers, 99–107.
Kramer, P.J. 1988a. Measurement of plant water status: Historical perspectives and current concerns. Irrigation Science 9 (4), 275-287.
Kramer, P.J. 1988b. Changing concepts regarding plant water relations. Plant, Cell & Environment 11 (7), 565-568.
Krizek, D. T., E. M. Middleton, R. K. Sandhu, and M. S. Kim. 2001. Evaluation UV-B effects and EDU protection in cucumber leaves using fluorescence images and fluorescence emission spectra. 158:41-53.
Lang, M., H. K. Lichtenthaler, M. Sowinska, F. Heisel, and J. A. Miehe. 1996. Fluorescenceimaging of water and temperature stress in plant leaves. Plant Physiology 148(5), 613–621.
Langsdorf, G., C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. K. Lichtenthaler. 2000. Multicolor fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation. Photosynthetica 38 (4), 539-551.
Lauer, M. J., J. S., and Boyer. 1992. Internal CO2 measured directly in leaves 1 abscisic acid and low leaf water potential cause opposing effects. Plant Physiology 98 (4), 1310–1316.
Lichtenthaler, H. K., and U. Rinderle. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry 19 Supplement 1, s29-s85.
Lichtenthaler, H. K., M. Lang, M. Sowinska, F. Heisel, and J. A. Miehé. 1996. Detection of vegetation stress via a new high resolution fluorescence imaging system. Plant Physiology 148 (5), 599-612.
Lichtenthaler, H. K., and J. A. Miehé. 1997. Fluorescence imaging as a diagnostics tool for plant stress. Trends in Plant Science 2 (8), 316–320.
Lichtenthaler, H. K., N. Subhash, O. Wenzel, and J. A. Miehe. 1997. Laser-induced imaging of blue/red and blue/far-red fluorescence ratios, F440/F690 and F440/F740, as a means of early stress detection in plants. IEEE, IGARSS Digest: 1799-1800.
Lichtenthaler, H. K. 1998. Plant stress detection by reflectance and fluorescence. Annals of the New York Academy of Sciences 851 (1 stress of lif).
Lichtenthaler, H. K., and F. Babani. 2000. Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. Journal of Plant Physiology Biochemistry 38 (11), 889-895.
Lichtenthaler, H. K., G. Langsdorf, S. Lenk, and C. Buschmann. 2005. Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43 (3), 355–369.

Lichtenthaler, H. K., F. Babani, and G. Langsdorf. 2007. Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynthesis Research. 93(1):235-244.
Lüdeker, W., H.-G. Dahn, K. P. Günther, and H. Schulz. 1999. Laser-induced fluorescence - A method to detect the vitality of Scots pines. Remote Sensing of Environment 68 (3), 225-236.
Mantha, S. V., G. A. Johnson, and T. A. Day. 2001. Evidence from action and fluorescence spectra that UV-induced violet-blue-green fluorescence enhances leaf photosynthesis. Photochemistry Photobiology 73 (3), 249-256.
Meyer, S., A. Cartelat, I. Moya, and Z. G. Cerovic. 2003. UV-induced blue-green and far-red fluorescence along wheat leaves: a potential signature of leaf ageing. Journal of Experimental Botany 54 (383), 757-769.
Michael L., K. Hartut Lichtenthaler, Malgorzata Sowinska, Francine Heisel, and Joseph A. Miehe. 1996. Fluorescence imaging of water and temperature stress in plant leaves. Plant Physiol Vol. 148. pp. 613-621
Muller, N. J. C. 1874. Beziehungen zwischen assimilation, absorption and fluoreszenz in chlorophyll as lebenden blattes. Jahrbucher Wissenchafliche Botanik 9:42-49.
Norikane, J. H., and K. Kurata. 2001. Water stress detection by monitoring fluorescence of plants under ambient light. Transactions of the ASAE 44 (6), 1915-1922.
Omasa, K. 1990. Image instrumentation methods of plant analysis. Modern Methods of Plant Analysis. Vol. 11. pp.203-243.
Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics SMC-9 (1), 62-66.
Papageorgiou GC., and Govindjee (eds). 2004. Chlorophyll a fluorescence: A signature of photosynthesis. Springer, Dordrecht.
Saito, Y., M. Kanoh, K. Hatakw, T. D. Kawahara, and A. Nomura. 1998. Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring. Appl. Optics 37(3): 431-437.
Schreiber, U., and W. Bilger. 1987. Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In "Plant response to stress. Functional analysis in mediterranean ecosystems", ed. J. Tenhunen, F. Catarino, O. Lange and W. Oechel. Berline Heidelberg: Springer-Verlag. 27-53.
Schweiger, J., M. Lang, and H. K. Lichtenthaler. 1996. Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plants. Journal of Plant Physiology 148 (5), 536-547.
Siebke, K., and E. Weis. 1995a. Assimilation images of leaves of Glechoma hederacea: Analysis of non-synchronous stomata reated oscillations. Planta 196: 155-165.
Siebke, K., and E. Weis. 1995b. Imaging chlorophyll a fluorescence in leaves: Topography of photosynthetic oscillations in leaves of Glechoma hederacea. Photosynth. Res. 45:225-237.
Soukupová, J., S. Smatanova, L. Nedbal, and A. Jegorov. 2003. Plant response to destruxins visualized by imaging of chlorophyll fluorescence. Physiologia Plantarum 118:399-405.
Subhash N., and C. Mohanan. 1997. Curve-fit analysis of chlorophyll fluorescence spectra: Application to nutrient stress detection in sunflower. Remote Sensing of Environment. 60(3): 347-356.
Subhash, N., O. Wenzel, and H. K. Lichtenthaler. 1999. Changes in blue-green chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants. Remote Sens. Environ. 69:215-223.
Subhash, N., C. N. Mohanan, R. J. Mallia, and V. Muralidharan. 2004. Quantification of stress adaptation by laser-induced fluorescence spectroscopy of plants exposed to engine exhaust emission and drought. Functional Plant Biology 31 (7), 709–719.
Takeuchi, A., Y. Saito, M. Kanoh, T. D. Kawahara, A. Nomura, H. Ishizawa, T. Matsuzawa, and K. Lomatsu. 2002. Laser-induced fluorescence detection of plant and optimal harvest time of agricultural products (Lettuce). Applied Engineering in Agriculture 18 (3), 361-366.
Tezara, W., V. J. Mitchell, S. D. Driscoll, and D. W. Lawlor. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401 (6756), 914-917.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top