|
[1]40Gb/s and 100Gb/s Ethernet Task Force, IEEE P802.3ba [Online]. Available: http://www.ieee802.org/3/ba/index.html [2]M. Nowell et al., “Overview of Requirements and Applications for 40 Gigabit and 100 Gigabit Ethernet,” Ethernet Alliance, Aug. 2007. [3]C. Cole et al., “100GbE-Optical LAN Technologies,” IEEE Communication Magazine, vol. 45, pp. 12-19, Dec. 2007. [4]QNAP Systems. [Online]. Available: http://www.qnap.com [5]Stone Bond Technologies. [Online]. Available: http://www.stonebond.com [6]Juniper Networks. [Online]. Available: http://www.juniper.net [7]S. Galal and B. Razavi, “40-Gb/s Amplifier and ESD Protection Circuit in 0.18-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 2389-2396, Dec. 2004. [8]J. Kim, et al., “Circuit Techniques for a 40Gb/s Transmitter in 0.13μm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 150-151, Feb. 2005. [9]J. Lee and K-C. Wu, “A 20-Gb/s Full-Rate Linear CDR Circuit with Automatic Frequency Acquisition,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3590-3602, Dec. 2009. [10]C. Kromer et al., “A 25-Gb/s CDR in 90-nm CMOS for High-Density Interconnects,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2921-2929, Dec. 2006. [11]K. Kanda et al., “40Gb/s 4:1 MUX/1:4 DEMUX in 90nm Standard CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 152-153, Feb. 2005. [12]J-K. Kim et al., “A Fully Integrated 0.13-μm CMOS 40-Gb/s Serial Link Transceiver,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 1510-1521, May 2009. [13]B-G. Kim et al., “A 20 Gb/s 1:4 DEMUX without Inductors and Low-Power Divide-by-2 Circuit in 0.13 μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 541-549, Feb. 2008. [14]A. Ong et al., “A 40 − 43-Gb/s Clock and Data Recovery IC With Integrated SFI-5 1:16 Demultiplexer in SiGe Technology,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2155-2168, Dec. 2003. [15]S. Kaeriyama et al., “A 40 Gb/s Multi-Data-Rate CMOS Transmitter and Receiver Chipset With SFI-5 Interface for Optical Transmission Systems,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3568-3579, Dec. 2009. [16]Serdes Framer Interface Level 5 (SFI-5): Implementation Agreement for 40 Gb/s Interface for Physical Layer Devices. Optical Internetworking Forum, 2002 [Online]. Available: http://www.oiforum.com/public/documents/OIF-SFI5-01.0.pdf [17]H. Banba et al., “A CMOS Bandgap Reference Circuit with Sub-1-V Operation,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 670-674, May 1999. [18]P. Yue and M. Rodwell, “mm-Wave IC Design: The Transition from III-V to CMOS Circuit Techniques,” Short Course, RF and High Speed CMOS, IEEE Compound Semiconductor IC symposium (CSIC), Nov. 2006. [19]Y. M. Greshishchev and P. Schvan, “SiGe Clock and Data Recovery IC with Linear-Type PLL for 10-Gb/s SONET Application,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1353-1359, Sep. 2000. [20]J. D. H. Alexander, “Clock Recovery from Random Binary Data,” Electronics Letters, vol. 11, pp. 541-542, Oct. 1975. [21]C. R. Hogge, “A Self-Correcting Clock Recovery Circuit,” IEEE J. Lightwave Tech., vol. 3, pp. 1312-1314, Dec. 1985. [22]J. Savoj and B. Razavi, “A 10-Gb/s CMOS Clock and Data Recovery Circuit with a Half-Rate Linear Phase Detector ,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 761-768, May 2001. [23]H. Noguchi et al., “A 40-Gb/s CDR Circuit With Adaptive Decision-Point Control Based on Eye-Opening Monitor Feedback,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 2929-2938, Dec. 2008. [24]Y. Amamiya et al., “A 40Gb/s Multi-Data-Rate CMOS Transceiver Chipset with SFI-5 Interface for Optical Transmission Systems,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 358-359, Feb. 2009. [25]A. Pottbacker et al., “A Si Bipolar Phase and Frequency Detector for Clock Extraction up to 8 Gb/s,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 1747-1751, Dec. 1992. [26]S. B. Anand and B. Razavi, “A 2.75Gb/s CMOS Clock Recovery Circuit with Broad Capture Range,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 214-215, Feb. 2001. [27]J. Savoj and B. Razavi, “A 10-Gb/s CMOS Clock and Data Recovery Circuit With a Half-Rate Binary Phase/Frequency Detector,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 13-21, Jan. 2003. [28]B. Razavi, Design of Integrated Circuits for Optical Communications. New York, NY: McGraw-Hill, 2002. [29]J. C. Scheytt et al., “A 0.155, 0.622, and 2.488 Gb/s Automatic Bit Rate Selecting Clock and Data Recovery IC for Bit Rate Transparent SDH Systems,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 348-349, Feb. 1999. [30]J. Lee and B. Razavi, “A 40-Gb/s Clock and Data Recovery Circuit in 0.18-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2181-2190, Dec. 2003. [31]J. Lee, “High-Speed Circuit Designs for Transmitters in Broadband Data Links,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 1004-1015, May 2006. [32]L. DeVito et al., “A 52MHz and 155MHz Clock-Recovery PLL,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 142-143, Feb. 1991. [33]J. Lee et al., “A 75-GHz Phase-Locked Loop in 90-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 1414-1426, Jun. 2008. [34]S. C. Chan et al., “Distributed Differential Oscillators for Global Clock Networks,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2083-2094, Sep. 2006. [35]A. P. Jose and K. L. Shepard, “Distributed Loss-Compensation Techniques for Energy-Efficient Low-Latency On-Chip Communication,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1415-1424, Jun. 2007. [36]B. Razavi, Principles of Data Conversion System Design. Piscataway, NJ: IEEE PRESS, 1995. [37]J. Lee and M. Liu, “20-Gb/s Burst-Mode Clock and Data Recovery Circuit Using Injection-Locking Technique,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 619-630, Mar. 2008. [38]J. Takasoh et al., “A 12.5Gbps Half-Rate CMOS CDR Circuit for 10Gbps Network Applications,” Digest of Symposium on VLSI Circuits, pp. 268-271, Jun. 2004. [39]Y. Ohtomo et al., “A 12.5-Gb/s Parallel Phase Detection Clock and Data Recovery Circuit in 0.13-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2052-2057, Sep. 2006. [40]R. J. Bayrum et al., “A 3GHz 12-Channel Time-Division Multiplexer -Demultiplexer Chip Set,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 192-193, Feb. 1986. [41]S. Pellerano et al., “A 4.75-GHz Fractional Frequency Divider-by-1.25 With TDC-Based All-Digital Spur Calibration in 45-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3422-3433, Dec. 2009. [42]C-W. Lo and H. C. Luong, “A 1.5-V 900-MHz Monolithic CMOS Fast -Switching Frequency Synthesizer for Wireless Applications,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 459-470, Apr. 2002. [43]E. Tournier et al., “High-Speed Dual-Modulus Prescaler Architecture for Programmable Digital Frequency Dividers,” IEE Electron. Lett., pp. 1433-1434, Nov. 2001. [44]B. Razavi, Design of Analog CMOS Integrated Circuits. New York, NY: McGraw-Hill, 2001. [45]J. Lee, “A 20-Gb/s Adaptive Equalizer in 0.13-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2058-2066, Sep. 2006. [46]IEEE Std 802.3ae, IEEE Standard for Information technology -Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements.
|