跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 10:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥良
研究生(外文):Yen-Liang Chen
論文名稱:適用於前瞻通訊系統之高效能預前編碼技術
論文名稱(外文):High-Performance Precoding Techniques for Advanced Communication Systems
指導教授:吳安宇吳安宇引用關係
指導教授(外文):An-Yeu Wu
口試委員:吳文榕曹恆偉陳紹基蔡佩芸丁邦安謝明得黃元豪
口試日期:2011-08-17
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:124
中文關鍵詞:預前編碼湯林森-何洛緒瑪預前編碼奇異值分解碼簿多重輸出輸入正交分頻多工百億位元乙太網路
外文關鍵詞:precodingtomlinson-harashima precodingsingular value decompositioncodebookMIMOOFDM10GBASE-T
相關次數:
  • 被引用被引用:0
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
從消息理論已知當傳送端獲得部分通道資訊,可利用預前編碼(Precoding)技術讓整體系統效能得到大幅提升,其好處包括可以有效對抗通道不良效應、降低接收端複雜度、提升系統吞吐量以及有效率分配多個使用者的通信資源…等,因此,預前編碼技術在很多前瞻通訊系統中扮演相當重要的角色,如現今的IEEE 802.3an、802.11n、802.16e/m以及3GPP-LTE都已經採用此類的設計,並將之納入其標準之中。針對不同的通訊系統,由於通道環境的不同,其預前編碼技術的需求也有所不同,因此本論文針對目前前瞻的有線及無線通訊系統,各自發展出所需要的預前編碼演算法及硬體架構設計。以下針對三種通訊環境作探討:
第一種是有線通訊環境,以10GBASE-T(IEEE 802.3an)乙太網路為主,所採用的預前編碼技術為湯林森-何洛緒瑪預前編碼(Tomlinson-Harashima Precoding),由於10GBASE-T所要求的百萬位元傳輸量,因此我們需要設計出高速的湯林森-何洛緒瑪預前編碼器,然而預前編碼器包含了非線性的迴饋電路,因此限制了它們在高速應用上的發展。所以本論文第一部分提出一個高速化方法,並且發展出泛用性的預前編碼器架構,在給定一個已知的設計規格下,所提出的方法可以在硬體複雜度和輸出的動態範圍之間做一個取捨,從而找出一個符合設計標準的近似最佳解。因此,此方法提供了更高的自由度,可在高速的預前編碼器作設計上的取捨。
第二種是室內無線通訊環境,以IEEE 802.11n為主,所採用的預前編碼技術為奇異值分解(Singular Value Decomposition),在接收端做完通道估測後,對所得到的通道矩陣進行奇異值分解,將一部分的分解結果回饋至傳送端,使傳送端可以使用最佳的預前編碼器來傳送資料,而另一部分的分解結果直接用於接收端做為解碼器,主要挑戰在於傳統的奇異值分解方法在運算複雜度及運算速度上都有很大的限制,因此本論文第二部分提出一套完整的可適性奇異值分解演算法及硬體架構設計,其所具備主要特色包含快速分解、有效提升硬體利用率、以及支援所有11n定義的傳收天線配對情形。
第三種是室外無線通訊環境,以802.16e/m及3GPP-LTE為主,所採用的預前編碼技術為碼簿搜尋(codebook searching),在行動通訊系統中,通道會快速變化,若是太慢回饋通道資訊,此資訊便不適用於當時的通道環境,而碼簿機制雖然可以節省回饋的資訊量,但是我們需要搜尋碼簿裡最佳的預前編碼器作為回饋的指標,此動作會大大的增加接收端的運算複雜度,因此本論文第三部分提出一系統化方法,可以在不失系統效能的情況下,有效減少碼簿搜尋範圍,並且大幅降低接收端的運算複雜度。
因此在本論文中,針對三種不同的通訊環境,我們提出相對應的高效能預前編碼技術,包含高速湯林森-何洛緒瑪預前編碼器、可重組態奇異值分解引擎、以及低複雜度碼簿搜尋機制,並且期望所提出的預前編碼技術也能夠應用在未來前瞻通訊系統之中。

When the transmitter knows the channel information, precoding is an effective way to overcome channel effect and achieve high throughput transmission. With this desirable feature, precoding techniques have been adopted by several advanced communication standards, such as IEEE 802.3an, IEEE 802.11n, IEEE 802.16e/m, and 3GPP-LTE. Depending on the type of channel information and how fast the channel changes, the required precoding techniques are different for different communication standards. The precoding techniques are Tomlinson- Harashima precoding, singular value decomposition, and codebook for wireline systems, WLAN systems, and WMAN/WWAN systems, respectively. The design challenges of each precoding technique are described as follows.
In the application of the IEEE 802.3an systems, the Tomlinson-Harashima (TH) precoders need to operate at a speed of 800MHz. However, the speed requirement is hard to meet since the TH precoders contain modulo devices and feedback loops. Therefore, we propose a two-time pipelining scheme to pipeline the TH precoders, which enables us to develop a generalized TH precoder architecture. The proposed scheme provides more degrees of freedom in designing high-speed pipelining TH precoders with build-in arbitrary speedup factors.
In the IEEE 802.11n systems, the use of the singular value composition (SVD) technique can greatly enhance the system throughput. However, the high computational complexity and high decomposing latency are the important issues in applying the SVD to the real-time applications. Hence, we propose a complete adaptive SVD algorithm, as well as a reconfigurable architecture design for high-throughput wireless systems. The main design features include low decomposing latency and supporting all antenna configurations in a multi-input multi-output (MIMO) system. The proposed design is implemented in 90nm technology for the application of IEEE 802.11n systems. The chip result shows that for an 802.11n system, the average latency of our SVD engine is only 0.33% of the WLAN coherence time. Therefore, the proposed SVD engine is very suitable for the high-throughput WLAN applications.
Due to the feedback delay constraint and limited feedback bandwidth, codebook-based precoding is a promising practical method in the WMAN/WWAN applications. According to the current channel condition, the receiver selects the optimal precoder from a codebook which consists of a finite set of precoders and sends the index of the chosen precoder over a limited-feedback channel. Conventional precoder selection criteria require high computational complexity. Besides, if the codebook is square, some precoder selection criteria are not feasible. Therefore, we propose a low-complexity precoder selection criterion which is applicable to any existing codebook. Compared with direct implementation, the proposed scheme has significant computational complexity reduction without performance loss.
In summary, we propose three high-performance precoding techniques with their own design considerations for the advanced communication applications in this thesis. We expect that the proposed precoding techniques can also be applied to future advanced communication systems.

誌謝 I
摘要 III
Abstract V
Contents VII
List of Figures IX
List of Tables XI
Chapter 1 Introduction 1
1.1 BACKGROUND 1
1.2 MOTIVATION AND RESEARCH CONTRIBUTIONS 7
1.3 THESIS ORGANIZATION 14
Chapter 2 Generalized Pipelined Tomlinson-Harashima Precoder 15
2.1 CONVENTIONAL IMPLEMENTATION OF TH PRECODERS 15
2.2 PROPOSED GENERALIZED PIPELINED TH PRECODER ARCHITECTURE 18
2.3 DESIGN EXAMPLES 28
2.4 PERFORMANCE COMPARISONS 32
2.5 SUMMARY 37
Chapter 3 Reconfigurable Singular Value Decomposition Engine Design 38
3.1 INTRODUCTION TO SVD TECHNIQUE 38
3.2 PROPOSED ADAPTIVE SVD ALGORITHM 43
3.3 ARCHITECTURAL DESIGN OF PROPOSED SVD ENGINE 49
3.4 ORTHOGONAL RECONSTRUCTION FOR FIXED-POINT IMPLEMENTATION 60
3.5 PERFORMANCE EVALUATION AND IMPLEMENTATION RESULTS 63
3.6 SUMMARY 75
Chapter 4 Low-Complexity Codebook Searching Mechanism 76
4.1 SYSTEM MODEL AND EXISTING PRECODER SELECTION CRITERIA 76
4.2 PROPOSED MAXIMUM DIAGONAL MEAN SQUARE ERROR (MDMSE)SELECTION CRITERION 83
4.3 PERFORMANCE EVALUATION 90
4.4 COMPUTATIONAL COMPLEXITY ANALYSIS 95
4.5 SUMMARY 100
Chapter 5 Conclusions 101
5.1 DESIGN ACHIEVEMENT 101
5.2 FUTURE WORKS 105
Appendix A Convergence Rate Analysis 106
Bibliography 113

[1]M. Tomlinson, “New automatic equalizer employing modulo arithmetic,” Electron. Lett., vol. 7, pp. 138–139, Mar. 1971.
[2]M. Miyakawa and H. Harashima, “A method of code conversion for a digital communication channel with intersymbol interference,” Trans. Inst. Electron. Commun. Eng. Jpn., vol. 52-A, pp. 272–273, Jun. 1969.
[3]H. Harashima and H. Miyakawa, “Matched-transmission technique for channels with intersymbol interference,” IEEE Trans. Commun., vol. COM-20, no. 4, pp. 774–780, Aug. 1972.
[4]G. D. Forney, Jr. and M. V. Eyuboğlu, “Combined equalization and coding using precoding,” IEEE Commun. Mag., vol. 29, no. 12, pp. 25–34, Dec. 1991.
[5]M. V. Eyuboğlu and G. D. Forney, Jr., “Trellis precoding: Combined coding, precoding, and shaping for intersymbol interference channels,” IEEE Trans. Inf. Theory, vol. 38, pp. 301–314, Mar. 1992.
[6]G. J. Pottie and M. V. Eyuboğlu, “Combined coding and precoding for PAM and QAM HDSL systems,” IEEE J. Select. Areas Commun., vol. 9, no. 2, pp. 861–870, Aug. 1991.
[7]E. Shusterman, “Performance implications of a nonadaptive Tomlinson- Harashima precoder,” T1E1.4 Standards Project Doc. 98-060, Mar. 2–5, 1998, pp. 1–6.
[8]“10 GBASE-T tutorial,” in Plenary Week 10 GBASE-T Study Group Meet., Nov. 2003. [Online].
Available: http://www.ieee802.org/3/10GBT/public/nov03
[9]Y. Gu and K. K. Parhi, “Pipelining Tomlinson-Harashima precoders,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Kobe, Japan, May 2005, pp. 408–411.
[10]Y. Gu and K. K. Parhi, “High-speed architecture design of Tomlinson-Harashima precoders,” IEEE Trans. Circuits Syst. I: Reg. Pap., vol. 54, no. 9, pp. 1929–1937, Sep. 2007.
[11]K. K. Parhi, “Pipelining in algorithms with quantizer loops,” IEEE Trans. Circuits Syst., vol. 38, no. 7, pp. 745–754, Jul. 1991.
[12]K. K. Parhi and D. G. Messerschmitt, “Pipeline interleaving and parallelism in recursive digital filters, Part I and Part II,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 7, pp. 1099–1135, Jul. 1989.
[13]Y. C. Lim, “A new approach for deriving scattered coefficients of pipelined IIR filters,” IEEE Trans. Signal Process., vol. 43, no. 10, pp. 2405–2406, Oct. 1995.
[14]Y. L. Chen, C. Y. Chen, K. Y. Jheng, and A. Y. Wu, “A universal look-ahead algorithm for pipelining IIR filters,” in Proc. IEEE Int. Symp. VLSI Design, Autom., Test, Hsinchu, Taiwan, Apr. 2008, pp. 259–262.
[15]A. Vareljian, “Fixed set FIR transfer functions for 10 GBASE-T Tomlinson- Harashima precoder,” in P802.3an Task Force Meet., Vancouver, BC, Canada, Jan. 26–28, 2005. [Online].
Available: http://www.ieee802.org/3/an/public/jan05/index.html
[16]N. Seshadri and J. H. Winters, “Two signaling schemes for improving the error performance of frequency-division-duplex (FDD) transmission systems using transmitter antenna diversity,” in Proc. IEEE Veh. Technol. Conf., May 1993, pp. 508−511.
[17]S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451−1458, Oct. 1998.
[18]A. Goldsmith, S. A. Jafar, N. Jindal, and S.Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Select. Areas Commun., vol. 21, no. 5, pp. 684−702, Jun. 2003.
[19]J. H. Winters, J. Salz, and R. D. Gitlin, “The impact of antenna diversity on the capacity of wireless communication systems,” IEEE Trans. Commun., vol. 42, no. 234, pp. 1740−1751, Feb.-Apr. 1994.
[20]H. Sampath, S. Talwar, J. Tellado, V. Erceg, and A. Paulraj, “A Fourth-Generation MIMO-OFDM: Broadband Wireless System: Design, Performance, and Field Trial Results,” IEEE Commun. Mag., vol. 40, no. 9, pp.143−149, Sept. 2002.
[21]I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” AT&T-Bell Labs Internal Tech. Memo, 1995.
[22]G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communication,” IEEE Trans. Commun., vol. 46, no. 3, pp. 357−366, Mar. 1998.
[23]G.W. Stewart, Introduction to Matrix Computations. New York: Academic Press, 1973.
[24]S. Haykin, Adaptive Filter Theory, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.
[25]F. Deprettere, SVD and Signal Processing: Algorithms, Analysis and Applications. Amsterdam: Elsevier Science Publishers, 1988.
[26]J. Laurila, K. Kopsa, R. Schurhuber, and E. Bonek, “Semi-blind separation and detection of co-channel signals,” in Proc. IEEE Int. Conf. Commun., vol. 1, Jun. 1999, pp. 17−22.
[27]D. J. Love and Jr. R. W. Heath, “Equal gain transmission in multiple-input multiple-output wireless systems,” IEEE Trans. Commun., vol. 51, no. 7, pp. 1102−1110, Jul. 2003.
[28]J. Ha et al., “LDPC Coded OFDM with Alamouti/SVD diversity technique,” Wireless Personal Commun., vol. 23, no. 1, pp183−194, Oct. 2002.
[29]IEEE P802.11n/D3.00, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications.
[30]R. Van Nee, V. K. Jones, G. Awater, A. Van Zelst, J. Gardner, and G. Steele, “The 802.11n MIMO-OFDM Standard for Wireless LAN and Beyond,” Wireless Personal Commun., vol 37, no. 3-4, pp. 445−453, Jun. 2006.
[31]Y. Xiao, “IEEE 802.11n: Enhancements for higher throughput in wireless LANs”, IEEE Wireless Commun., vol. 12, no. 6, pp. 82−91, Dec. 2005.
[32]T. K. Paul and T. Ogunfunmi, “Wireless LAN Comes of Age: Understanding the IEEE 802.11n Amendment,” IEEE Circuits Syst. Mag., vol. 8, no. 1, pp. 28−54, First Quarter 2008.
[33]T. S. Rappaport, Wireless Communications: Principle and Practice, 1st ed. Englewood Cliffs, NJ: Prentice Hall, 1996.
[34]D. Marković, B. Nikolić, and R. W. Brodersen, “Power and Area Minimization for Multidimensional Signal Processing,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 922−934, Apr. 2007.
[35]A. Poon, D. Tse, and R. W. Brodersen, “An Adaptive Multiantenna Transceiver for Slowly Flat Fading Channels,” IEEE Trans. Commun., vol. 51, no. 13, pp. 1820−1827, Nov. 2003.
[36]Y. G. Li, J. H. Winters, and N. R. Sollenberger, “MIMO-OFDM for wireless communications: signal detection with enhanced channel estimation,” IEEE Trans. Commun., vol. 50, no. 9, pp. 1471−1477, Sep. 2002.
[37]H. Minn, and N. Al-Dhahir, “Optimal training signals for MIMO OFDM channel estimation,” IEEE Trans. Wireless Commun., vol. 5, no. 5, pp. 1158−1168, May 2006.
[38]T. D. Chiueh, and P. Y. Tsai, OFDM baseband receiver design for wireless communications. New York: Wiley, 2007.
[39]K. K. Parhi, VLSI Digital Signal Processing Systems. New York: Wiley, 1999.
[40]M. Clark, “IEEE 802.11a WLAN model,” Mathworks, Inc., June 2003. [Online].
Available: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?ob jectId=3540&objectType=file
[41]Joint Proposal: High throughput extension to the 802.11 Standard: PHY doc.: IEEE 802. 11-05/1102r4. [Online].
Available: http://www.ieee802.org/11/Doc-Files/05/11-05-1102-04-000n-joint-pro posal-phy specification.Doc
[42]C. Studer, P. Blosch, P. Friendli, and A. Burg, “Matrix decomposition architecture for MIMO systems: Design and implementation trade-offs,” in Proc. the 41th Asilomar Conf. Signals, Syst., Comput., Nov. 2007, pp. 1986–1990.
[43]C. Senning, C. Studer, P. Luethi, and W. Fichtner, “Hardware-efficient steering matrix computation architecture for MIMO communication system,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2008, pp. 304–307.
[44]L. Collin, O. Berder, P. Rostaing, and G. Burel, “Optimal minimum distance-based precoder for MIMO spatial multiplexing systems,” IEEE Trans. Signal Process., vol. 52, no. 3, pp. 617–627, Mar. 2004.
[45]A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, “Optimal designs for space-time linear precoders and decoders,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1051–1064, May 2002.
[46]H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion,” IEEE Trans. Commun., vol. 49, no. 12, pp. 2198–2206, Dec. 2001.
[47]D. J. Love, R. W. Heath, Jr., V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An overview of limited feedback in wireless communication systems,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 1341–1365, Oct. 2008.
[48]IEEE-SA Standards Board, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands,” IEEE Std 802.16e-2005, Feb. 2006.
[49]IEEE-SA Standards Board, “IEEE 802.16 Task Group m,” http://wirelessman.org/tgm/.
[50]J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX: Understanding Broadband Wireless Networking. Upper Saddle River, NJ: Prentice Hall, 2007.
[51]D. Gesbert, C. V. Rensburg, F. Tosato, and F. Kaltenberger, “Multiple antenna techniques,” in UMTS Long Term Evolution (LTE): From Theory to Practice, S. Sesia, I. Toufik, and M. Baker, Eds. Wiley, 2008, ch. 7.
[52]3GPP, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8),” March 2009. [Online].
Available: http://www.3gpp.org/ftp/Specs/html-info/36213.htm.
[53]D. J. Love and R. W. Heath, Jr., “Grassmannian precoding for spatial multiplexing systems,” in Proc. Allerton Conf. Commun. Contr. Comp., Monticello, IL, Oct. 1–3, 2003.
[54]D. J. Love and R. W. Heath, Jr., “Limited feedback unitary precoding for spatial multiplexing systems,” IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2967–2976, Aug. 2005.
[55]S. Zhou and B. Li, “BER criterion and codebook construction for finite-rate precoded spatial multiplexing with linear receivers,” IEEE Trans. Signal Process, vol. 54, no. 5, pp. 1653–1665, May 2006.
[56]L. Ma, K. Dickson, J. McAllister, and J. McCanny, “QR decomposition-based matrix inversion for high performance embedded MIMO receivers,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1858–1867, Apr. 2011.
[57]S. D. Muruganathan and A. B. Sesay, “A computationally efficient QR-successive interference cancellation scheme for simplified receiver implementation in SFBC-OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3641–3647, Oct. 2007.
[58]G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press, 1996.
[59]R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge Univ. Press, 1985.
[60]A. T. Fam, “Efficient complex matrix multiplication,” IEEE Trans. Comput., vol. 37, no. 7, pp. 877–879, Jul. 1988.
[61]D. E. Knuth, The Art of Computer Programming. Vol. 3: Sorting and Searching, 2nd ed. Reading, Massachusetts: Addison-Wesley, 1998.
[62]R. F. H. Fischer and J. B. Huber, “Comparison of precoding schemes for digital subscriber lines,” IEEE Trans. Commun., vol. 45, no. 3, pp. 334–343, Mar. 1997.
[63]R. F. H. Fischer, R. Tzschoppe, and J. B. Huber, “Signal shaping for reduction of peak-power and dynamic range in precoding schemes,” in Proc. IEEE Global Telecommun. Conf., vol. 1, Nov. 2001, pp. 339–343.
[64]L. F. Wei, “Generalized square and hexagonal constellations for intersymbol-interference channels with generalized Tomlinson-Harashima precoders,” IEEE Trans. Commun., vol 42, no. 9, pp. 2713–2721, Sep. 1994.
[65]J. W, and T. Le-Ngoc, “Performance analysis of M-PAM signalling with Tomlinson Harashima precoding over ISI channels,” in Proc. IEEE Global Telecommun. Conf., vol. 2, Nov. 2002, pp. 1315–1318.
[66]W. H. Gerstacker, and R. F. H. Fischer, and J. B. Huber, “Blind equalization for digital cable transmission with Tomlinson-Harashima precoding and shaping,” in Proc. IEEE Int. Conf. Commun., vol. 1, Jun. 1995, pp. 493–497.
[67]R. F. H. Fischer, W. H. Gerstacker, and J. B. Huber, “Dynamics limited precoding, shaping, and blind equalization for fast digital transmission over twisted pair lines,” IEEE J. Select. Areas Commun., vol. 13, no. 9, pp. 1622–1633.
[68]G. Zimmerman, “Downside of TH precoding,” in IEEE May 2004 Interim Week P802.3an Task Force Meeting, Jun. 14, 2004. [Online].
Available: http://www.ieee802.org/3/an/public/may04/
[69]S. Kasturia, “Wrap-up: Generating the 10 GBASE-T drafts,” in IEEE May 2004 Interim Week P802.3an Task Force Meeting, Jun. 14, 2004. [Online].
Available: http://www.ieee802.org/3/an/public/may04/
[70]Y. R. Chien, Y. T. Tu, H. W. Tsao, and W. L. Mao, “Equalization and Interference Cancellation with MIMO THP for 10GBASE-T,” in Proc. IEEE Workshop Signal Process. Syst., Oct. 2007, pp. 95–100.
[71]Y. R. Chien, W. L. Mao, and H. W. Tsao, “Design of a Robust Multi-Channel Timing Recovery System With Imperfect Channel State Information for 10GBASE-T,” IEEE Trans. Circuits Syst. I: Reg. Pap., vol. 57, no. 4, pp. 886–896, Apr. 2010.
[72]S. Nanda, R. Walton, J. Ketchum, M. Wallace, and S. Howard, “A High-Performance MIMO OFDM Wireless LAN,” IEEE Commun. Mag., vol. 43, no. 2, pp. 101–109, Feb. 2005.
[73]K. Zheng, L. Huang, G. Li, H. Cao, W. Wang, and M. Dohler, “Beyond 3G Evolution,” IEEE Veh. Technol. Mag., vol. 3, no. 2, pp. 30–36, Jun. 2008.
[74]H. Yang, “A Road to Future Broadband Wireless Access: MIMO-OFDM-Based Air Interface,” IEEE Commun. Mag., vol. 43, no. 1, pp. 53–60, Jan. 2005.
[75]C. Dubuc, D. Starks, T. Creasy, and Y. Hou, “A MIMO-OFDM Prototype for Next-Generation Wireless WANs,” IEEE Commun. Mag., vol. 42, no. 12, pp. 82–87, Dec. 2004.
[76]A. Stamoulis, S. N. Diggavi, and N. Al-Dhahir, “Intercarrier Interference in MIMO OFDM,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2451–2464, Sep. 2002.
[77]D. Niyato, and E. Hossain, “Radio Resource Management in MIMO-OFDM- Mesh Networks: Issues and Approaches,” IEEE. Commun. Mag., vol. 45, no. 11, pp. 100–107, Nov. 2007.
[78]G. Fettweis, E. Zimmermann, V. Jungnickel, and E. A. Jorswieck, “Challenges in Future Short Range Wireless Systems,” IEEE Veh. Technol. Mag., vol. 1, no. 2, pp. 24–31, Jun. 2006.
[79]Y. Zhou, T. S. Ng, J. Wang, K. Higuchi, and M. Sawahashi, “OFCDM: a promising broadband wireless access technique,” IEEE Commun. Mag., vol. 46, no. 3, pp. 38–49, Mar. 2008.
[80]A. R. Rofougaran, M. Rofougaran, and A. Behzad, “Radios for next-generation wireless networks,” IEEE Microwave Mag., vol. 6, no. 1, pp. 38–43, Mar. 2005.
[81]R. F. H. Fischer, Precoding and Signal Shaping for Digital Communications. New York: Wiley, 2002.
[82]A. A. D’ Amico and M. Morelli, “Joint TX-RX MMSE design for MIMO multicarrier systems with Tomlinson–Harashima pre-coding,” IEEE Trans. Wireless Commun., vol. 7, no. 8, pp. 3118–3127, Aug. 2008.
[83]C. Windpassinger, R. F. H. Fischer, T. Vencel, and J. B. Huber, “Precoding in multiantenna and multiuser communications,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1305–1316, Jul. 2004.
[84]Y. Zhu and K. B. Letaief, “Frequency domain equalization with Tomlinson–Harashima precoding for single carrier broadband MIMO systems,” IEEE Trans. Wireless Commun., vol. 6, no. 12, pp. 4420–4431, Dec. 2007.
[85]M. Joham, D. Schmidt, J. Brehmer, and W. Utschick, “Finite-length MMSE Tomlinson–Harashima precoding for frequency selective vector channels,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 3073–3088, Jun. 2007.
[86]M. B. Shenouda and T. N. Davidson, “Tomlinson–Harashima precoding for broadcast channels with uncertainty,” IEEE J. Select. Areas Commun., vol. 25, no. 7, pp. 1380–1389, Sep. 2007.
[87]F. A. Dietrich, P. Breun, and W. Utschick, “Robust Tomlinson–Harashima precoding for the wireless broadcast channel,” IEEE Trans. Signal Process., vol. 55, no. 2, pp. 631–644, Feb. 2007.
[88]M. Payaro, A. Pascual-Iserte, A. I. Perez-Neira, and M. A. Lagunas, “Robust design of spatial Tomlinson–Harashima Precoding in the presence of errors in the CSI,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2396–2401, Jul. 2007.
[89]D. Tsipouridou and A. P. Liavas, “On the Sensitivity of the MIMO Tomlinson–Harashima Precoder With Respect to Channel Uncertainties,” IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2261–2272, Apr. 2010.
[90]A. A. D’ Amico, “Tomlinson–Harashima Precoding in MIMO Systems: A Unified Approach to Transceiver Optimization Based on Multiplicative Schur-Convexity,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3662–3677, Aug. 2008.
[91]J. Wang, M. Wu, and F. Zheng, “The Codebook Design for MIMO Precoding Systems in LTE and LTE-A,” in Proc. IEEE Int. Conf. Wireless Commun. Net. and Mobile Comput., Sep. 2010, pp. 1–4.
[92]S. Schwarz, C. Mehlfuhrer, and M. Rupp, “Calculation of the spatial preprocessing and link adaption feedback for 3GPP UMTS/LTE,” in Proc. IEEE Wireless Adv., Jun. 2010, pp. 1–6.
[93]Z. Bai, C. Spiegel, G. H. Bruck, P. Jung, M. Horvat, J. Berkmann, and C. Drewes, “Dynamic transmission mode selection in LTE/LTE-Advanced system,” in Proc. IEEE Int. Symp. Applied Sciences in Biomed. and Commun. Technol., Nov. 2010, pp. 1–5.
[94]S. Schwarz, M. Wrulich, and M. Rupp, “Mutual information based calculation of the Precoding Matrix Indicator for 3GPP UMTS/LTE,” in Proc. IEEE Int. ITG Workshop Smart Antennas, Feb. 2010, pp. 52–58.
[95]B. Varadarajan, E. Onggosanusi, A. Dabak, R. Chen, “Nested codebook design for MIMO precoders,” in Proc. IEEE Asilomar Conf. Signals, Systems and Comp., Oct. 2008, pp. 723–727.
[96]3GPP, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2,” Sep. 2008. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36300.htm.
[97]3GPP, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8),” Sep. 2009. [Online].
Available: http://www.3gpp.org/ftp/Specs/html-info/36211.htm.
[98]S. N. Donthi, and N. B. Mehta, “Performance Analysis of User Selected Subband Channel Quality Indicator Feedback Scheme of LTE,” in Proc. IEEE Global Telecommun. Conf., Dec. 2010, pp. 1–6.
[99]S. Sesia, I. Toufik, and M. Baker, LTE – The UMTS Long Term Evolution, From Theory to Practice. John Wiley and Sons, 2009.
[100]Z. Bai, C. Spiegel, Bruck, G. H. Bruck, P. Jung, M. Horvat, J. Berkmann, C. Drewes, and B Gunzelmann, “On the physical layer performance with rank indicator selection in LTE/LTE-Advanced system,” in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun., Sep. 2010, pp. 393–398.
[101]M. Vu and A. Paulraj, “MIMO Wireless Linear Precoding,” IEEE Signal Process. Mag., vol. 24, no. 5, pp. 86–105, Sep. 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊