|
[1]M. Tomlinson, “New automatic equalizer employing modulo arithmetic,” Electron. Lett., vol. 7, pp. 138–139, Mar. 1971. [2]M. Miyakawa and H. Harashima, “A method of code conversion for a digital communication channel with intersymbol interference,” Trans. Inst. Electron. Commun. Eng. Jpn., vol. 52-A, pp. 272–273, Jun. 1969. [3]H. Harashima and H. Miyakawa, “Matched-transmission technique for channels with intersymbol interference,” IEEE Trans. Commun., vol. COM-20, no. 4, pp. 774–780, Aug. 1972. [4]G. D. Forney, Jr. and M. V. Eyuboğlu, “Combined equalization and coding using precoding,” IEEE Commun. Mag., vol. 29, no. 12, pp. 25–34, Dec. 1991. [5]M. V. Eyuboğlu and G. D. Forney, Jr., “Trellis precoding: Combined coding, precoding, and shaping for intersymbol interference channels,” IEEE Trans. Inf. Theory, vol. 38, pp. 301–314, Mar. 1992. [6]G. J. Pottie and M. V. Eyuboğlu, “Combined coding and precoding for PAM and QAM HDSL systems,” IEEE J. Select. Areas Commun., vol. 9, no. 2, pp. 861–870, Aug. 1991. [7]E. Shusterman, “Performance implications of a nonadaptive Tomlinson- Harashima precoder,” T1E1.4 Standards Project Doc. 98-060, Mar. 2–5, 1998, pp. 1–6. [8]“10 GBASE-T tutorial,” in Plenary Week 10 GBASE-T Study Group Meet., Nov. 2003. [Online]. Available: http://www.ieee802.org/3/10GBT/public/nov03 [9]Y. Gu and K. K. Parhi, “Pipelining Tomlinson-Harashima precoders,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Kobe, Japan, May 2005, pp. 408–411. [10]Y. Gu and K. K. Parhi, “High-speed architecture design of Tomlinson-Harashima precoders,” IEEE Trans. Circuits Syst. I: Reg. Pap., vol. 54, no. 9, pp. 1929–1937, Sep. 2007. [11]K. K. Parhi, “Pipelining in algorithms with quantizer loops,” IEEE Trans. Circuits Syst., vol. 38, no. 7, pp. 745–754, Jul. 1991. [12]K. K. Parhi and D. G. Messerschmitt, “Pipeline interleaving and parallelism in recursive digital filters, Part I and Part II,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 7, pp. 1099–1135, Jul. 1989. [13]Y. C. Lim, “A new approach for deriving scattered coefficients of pipelined IIR filters,” IEEE Trans. Signal Process., vol. 43, no. 10, pp. 2405–2406, Oct. 1995. [14]Y. L. Chen, C. Y. Chen, K. Y. Jheng, and A. Y. Wu, “A universal look-ahead algorithm for pipelining IIR filters,” in Proc. IEEE Int. Symp. VLSI Design, Autom., Test, Hsinchu, Taiwan, Apr. 2008, pp. 259–262. [15]A. Vareljian, “Fixed set FIR transfer functions for 10 GBASE-T Tomlinson- Harashima precoder,” in P802.3an Task Force Meet., Vancouver, BC, Canada, Jan. 26–28, 2005. [Online]. Available: http://www.ieee802.org/3/an/public/jan05/index.html [16]N. Seshadri and J. H. Winters, “Two signaling schemes for improving the error performance of frequency-division-duplex (FDD) transmission systems using transmitter antenna diversity,” in Proc. IEEE Veh. Technol. Conf., May 1993, pp. 508−511. [17]S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451−1458, Oct. 1998. [18]A. Goldsmith, S. A. Jafar, N. Jindal, and S.Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Select. Areas Commun., vol. 21, no. 5, pp. 684−702, Jun. 2003. [19]J. H. Winters, J. Salz, and R. D. Gitlin, “The impact of antenna diversity on the capacity of wireless communication systems,” IEEE Trans. Commun., vol. 42, no. 234, pp. 1740−1751, Feb.-Apr. 1994. [20]H. Sampath, S. Talwar, J. Tellado, V. Erceg, and A. Paulraj, “A Fourth-Generation MIMO-OFDM: Broadband Wireless System: Design, Performance, and Field Trial Results,” IEEE Commun. Mag., vol. 40, no. 9, pp.143−149, Sept. 2002. [21]I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” AT&T-Bell Labs Internal Tech. Memo, 1995. [22]G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communication,” IEEE Trans. Commun., vol. 46, no. 3, pp. 357−366, Mar. 1998. [23]G.W. Stewart, Introduction to Matrix Computations. New York: Academic Press, 1973. [24]S. Haykin, Adaptive Filter Theory, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991. [25]F. Deprettere, SVD and Signal Processing: Algorithms, Analysis and Applications. Amsterdam: Elsevier Science Publishers, 1988. [26]J. Laurila, K. Kopsa, R. Schurhuber, and E. Bonek, “Semi-blind separation and detection of co-channel signals,” in Proc. IEEE Int. Conf. Commun., vol. 1, Jun. 1999, pp. 17−22. [27]D. J. Love and Jr. R. W. Heath, “Equal gain transmission in multiple-input multiple-output wireless systems,” IEEE Trans. Commun., vol. 51, no. 7, pp. 1102−1110, Jul. 2003. [28]J. Ha et al., “LDPC Coded OFDM with Alamouti/SVD diversity technique,” Wireless Personal Commun., vol. 23, no. 1, pp183−194, Oct. 2002. [29]IEEE P802.11n/D3.00, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. [30]R. Van Nee, V. K. Jones, G. Awater, A. Van Zelst, J. Gardner, and G. Steele, “The 802.11n MIMO-OFDM Standard for Wireless LAN and Beyond,” Wireless Personal Commun., vol 37, no. 3-4, pp. 445−453, Jun. 2006. [31]Y. Xiao, “IEEE 802.11n: Enhancements for higher throughput in wireless LANs”, IEEE Wireless Commun., vol. 12, no. 6, pp. 82−91, Dec. 2005. [32]T. K. Paul and T. Ogunfunmi, “Wireless LAN Comes of Age: Understanding the IEEE 802.11n Amendment,” IEEE Circuits Syst. Mag., vol. 8, no. 1, pp. 28−54, First Quarter 2008. [33]T. S. Rappaport, Wireless Communications: Principle and Practice, 1st ed. Englewood Cliffs, NJ: Prentice Hall, 1996. [34]D. Marković, B. Nikolić, and R. W. Brodersen, “Power and Area Minimization for Multidimensional Signal Processing,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 922−934, Apr. 2007. [35]A. Poon, D. Tse, and R. W. Brodersen, “An Adaptive Multiantenna Transceiver for Slowly Flat Fading Channels,” IEEE Trans. Commun., vol. 51, no. 13, pp. 1820−1827, Nov. 2003. [36]Y. G. Li, J. H. Winters, and N. R. Sollenberger, “MIMO-OFDM for wireless communications: signal detection with enhanced channel estimation,” IEEE Trans. Commun., vol. 50, no. 9, pp. 1471−1477, Sep. 2002. [37]H. Minn, and N. Al-Dhahir, “Optimal training signals for MIMO OFDM channel estimation,” IEEE Trans. Wireless Commun., vol. 5, no. 5, pp. 1158−1168, May 2006. [38]T. D. Chiueh, and P. Y. Tsai, OFDM baseband receiver design for wireless communications. New York: Wiley, 2007. [39]K. K. Parhi, VLSI Digital Signal Processing Systems. New York: Wiley, 1999. [40]M. Clark, “IEEE 802.11a WLAN model,” Mathworks, Inc., June 2003. [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?ob jectId=3540&objectType=file [41]Joint Proposal: High throughput extension to the 802.11 Standard: PHY doc.: IEEE 802. 11-05/1102r4. [Online]. Available: http://www.ieee802.org/11/Doc-Files/05/11-05-1102-04-000n-joint-pro posal-phy specification.Doc [42]C. Studer, P. Blosch, P. Friendli, and A. Burg, “Matrix decomposition architecture for MIMO systems: Design and implementation trade-offs,” in Proc. the 41th Asilomar Conf. Signals, Syst., Comput., Nov. 2007, pp. 1986–1990. [43]C. Senning, C. Studer, P. Luethi, and W. Fichtner, “Hardware-efficient steering matrix computation architecture for MIMO communication system,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2008, pp. 304–307. [44]L. Collin, O. Berder, P. Rostaing, and G. Burel, “Optimal minimum distance-based precoder for MIMO spatial multiplexing systems,” IEEE Trans. Signal Process., vol. 52, no. 3, pp. 617–627, Mar. 2004. [45]A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, “Optimal designs for space-time linear precoders and decoders,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1051–1064, May 2002. [46]H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion,” IEEE Trans. Commun., vol. 49, no. 12, pp. 2198–2206, Dec. 2001. [47]D. J. Love, R. W. Heath, Jr., V. K. N. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An overview of limited feedback in wireless communication systems,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 1341–1365, Oct. 2008. [48]IEEE-SA Standards Board, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands,” IEEE Std 802.16e-2005, Feb. 2006. [49]IEEE-SA Standards Board, “IEEE 802.16 Task Group m,” http://wirelessman.org/tgm/. [50]J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX: Understanding Broadband Wireless Networking. Upper Saddle River, NJ: Prentice Hall, 2007. [51]D. Gesbert, C. V. Rensburg, F. Tosato, and F. Kaltenberger, “Multiple antenna techniques,” in UMTS Long Term Evolution (LTE): From Theory to Practice, S. Sesia, I. Toufik, and M. Baker, Eds. Wiley, 2008, ch. 7. [52]3GPP, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8),” March 2009. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36213.htm. [53]D. J. Love and R. W. Heath, Jr., “Grassmannian precoding for spatial multiplexing systems,” in Proc. Allerton Conf. Commun. Contr. Comp., Monticello, IL, Oct. 1–3, 2003. [54]D. J. Love and R. W. Heath, Jr., “Limited feedback unitary precoding for spatial multiplexing systems,” IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2967–2976, Aug. 2005. [55]S. Zhou and B. Li, “BER criterion and codebook construction for finite-rate precoded spatial multiplexing with linear receivers,” IEEE Trans. Signal Process, vol. 54, no. 5, pp. 1653–1665, May 2006. [56]L. Ma, K. Dickson, J. McAllister, and J. McCanny, “QR decomposition-based matrix inversion for high performance embedded MIMO receivers,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1858–1867, Apr. 2011. [57]S. D. Muruganathan and A. B. Sesay, “A computationally efficient QR-successive interference cancellation scheme for simplified receiver implementation in SFBC-OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3641–3647, Oct. 2007. [58]G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press, 1996. [59]R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge Univ. Press, 1985. [60]A. T. Fam, “Efficient complex matrix multiplication,” IEEE Trans. Comput., vol. 37, no. 7, pp. 877–879, Jul. 1988. [61]D. E. Knuth, The Art of Computer Programming. Vol. 3: Sorting and Searching, 2nd ed. Reading, Massachusetts: Addison-Wesley, 1998. [62]R. F. H. Fischer and J. B. Huber, “Comparison of precoding schemes for digital subscriber lines,” IEEE Trans. Commun., vol. 45, no. 3, pp. 334–343, Mar. 1997. [63]R. F. H. Fischer, R. Tzschoppe, and J. B. Huber, “Signal shaping for reduction of peak-power and dynamic range in precoding schemes,” in Proc. IEEE Global Telecommun. Conf., vol. 1, Nov. 2001, pp. 339–343. [64]L. F. Wei, “Generalized square and hexagonal constellations for intersymbol-interference channels with generalized Tomlinson-Harashima precoders,” IEEE Trans. Commun., vol 42, no. 9, pp. 2713–2721, Sep. 1994. [65]J. W, and T. Le-Ngoc, “Performance analysis of M-PAM signalling with Tomlinson Harashima precoding over ISI channels,” in Proc. IEEE Global Telecommun. Conf., vol. 2, Nov. 2002, pp. 1315–1318. [66]W. H. Gerstacker, and R. F. H. Fischer, and J. B. Huber, “Blind equalization for digital cable transmission with Tomlinson-Harashima precoding and shaping,” in Proc. IEEE Int. Conf. Commun., vol. 1, Jun. 1995, pp. 493–497. [67]R. F. H. Fischer, W. H. Gerstacker, and J. B. Huber, “Dynamics limited precoding, shaping, and blind equalization for fast digital transmission over twisted pair lines,” IEEE J. Select. Areas Commun., vol. 13, no. 9, pp. 1622–1633. [68]G. Zimmerman, “Downside of TH precoding,” in IEEE May 2004 Interim Week P802.3an Task Force Meeting, Jun. 14, 2004. [Online]. Available: http://www.ieee802.org/3/an/public/may04/ [69]S. Kasturia, “Wrap-up: Generating the 10 GBASE-T drafts,” in IEEE May 2004 Interim Week P802.3an Task Force Meeting, Jun. 14, 2004. [Online]. Available: http://www.ieee802.org/3/an/public/may04/ [70]Y. R. Chien, Y. T. Tu, H. W. Tsao, and W. L. Mao, “Equalization and Interference Cancellation with MIMO THP for 10GBASE-T,” in Proc. IEEE Workshop Signal Process. Syst., Oct. 2007, pp. 95–100. [71]Y. R. Chien, W. L. Mao, and H. W. Tsao, “Design of a Robust Multi-Channel Timing Recovery System With Imperfect Channel State Information for 10GBASE-T,” IEEE Trans. Circuits Syst. I: Reg. Pap., vol. 57, no. 4, pp. 886–896, Apr. 2010. [72]S. Nanda, R. Walton, J. Ketchum, M. Wallace, and S. Howard, “A High-Performance MIMO OFDM Wireless LAN,” IEEE Commun. Mag., vol. 43, no. 2, pp. 101–109, Feb. 2005. [73]K. Zheng, L. Huang, G. Li, H. Cao, W. Wang, and M. Dohler, “Beyond 3G Evolution,” IEEE Veh. Technol. Mag., vol. 3, no. 2, pp. 30–36, Jun. 2008. [74]H. Yang, “A Road to Future Broadband Wireless Access: MIMO-OFDM-Based Air Interface,” IEEE Commun. Mag., vol. 43, no. 1, pp. 53–60, Jan. 2005. [75]C. Dubuc, D. Starks, T. Creasy, and Y. Hou, “A MIMO-OFDM Prototype for Next-Generation Wireless WANs,” IEEE Commun. Mag., vol. 42, no. 12, pp. 82–87, Dec. 2004. [76]A. Stamoulis, S. N. Diggavi, and N. Al-Dhahir, “Intercarrier Interference in MIMO OFDM,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2451–2464, Sep. 2002. [77]D. Niyato, and E. Hossain, “Radio Resource Management in MIMO-OFDM- Mesh Networks: Issues and Approaches,” IEEE. Commun. Mag., vol. 45, no. 11, pp. 100–107, Nov. 2007. [78]G. Fettweis, E. Zimmermann, V. Jungnickel, and E. A. Jorswieck, “Challenges in Future Short Range Wireless Systems,” IEEE Veh. Technol. Mag., vol. 1, no. 2, pp. 24–31, Jun. 2006. [79]Y. Zhou, T. S. Ng, J. Wang, K. Higuchi, and M. Sawahashi, “OFCDM: a promising broadband wireless access technique,” IEEE Commun. Mag., vol. 46, no. 3, pp. 38–49, Mar. 2008. [80]A. R. Rofougaran, M. Rofougaran, and A. Behzad, “Radios for next-generation wireless networks,” IEEE Microwave Mag., vol. 6, no. 1, pp. 38–43, Mar. 2005. [81]R. F. H. Fischer, Precoding and Signal Shaping for Digital Communications. New York: Wiley, 2002. [82]A. A. D’ Amico and M. Morelli, “Joint TX-RX MMSE design for MIMO multicarrier systems with Tomlinson–Harashima pre-coding,” IEEE Trans. Wireless Commun., vol. 7, no. 8, pp. 3118–3127, Aug. 2008. [83]C. Windpassinger, R. F. H. Fischer, T. Vencel, and J. B. Huber, “Precoding in multiantenna and multiuser communications,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1305–1316, Jul. 2004. [84]Y. Zhu and K. B. Letaief, “Frequency domain equalization with Tomlinson–Harashima precoding for single carrier broadband MIMO systems,” IEEE Trans. Wireless Commun., vol. 6, no. 12, pp. 4420–4431, Dec. 2007. [85]M. Joham, D. Schmidt, J. Brehmer, and W. Utschick, “Finite-length MMSE Tomlinson–Harashima precoding for frequency selective vector channels,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 3073–3088, Jun. 2007. [86]M. B. Shenouda and T. N. Davidson, “Tomlinson–Harashima precoding for broadcast channels with uncertainty,” IEEE J. Select. Areas Commun., vol. 25, no. 7, pp. 1380–1389, Sep. 2007. [87]F. A. Dietrich, P. Breun, and W. Utschick, “Robust Tomlinson–Harashima precoding for the wireless broadcast channel,” IEEE Trans. Signal Process., vol. 55, no. 2, pp. 631–644, Feb. 2007. [88]M. Payaro, A. Pascual-Iserte, A. I. Perez-Neira, and M. A. Lagunas, “Robust design of spatial Tomlinson–Harashima Precoding in the presence of errors in the CSI,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2396–2401, Jul. 2007. [89]D. Tsipouridou and A. P. Liavas, “On the Sensitivity of the MIMO Tomlinson–Harashima Precoder With Respect to Channel Uncertainties,” IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2261–2272, Apr. 2010. [90]A. A. D’ Amico, “Tomlinson–Harashima Precoding in MIMO Systems: A Unified Approach to Transceiver Optimization Based on Multiplicative Schur-Convexity,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3662–3677, Aug. 2008. [91]J. Wang, M. Wu, and F. Zheng, “The Codebook Design for MIMO Precoding Systems in LTE and LTE-A,” in Proc. IEEE Int. Conf. Wireless Commun. Net. and Mobile Comput., Sep. 2010, pp. 1–4. [92]S. Schwarz, C. Mehlfuhrer, and M. Rupp, “Calculation of the spatial preprocessing and link adaption feedback for 3GPP UMTS/LTE,” in Proc. IEEE Wireless Adv., Jun. 2010, pp. 1–6. [93]Z. Bai, C. Spiegel, G. H. Bruck, P. Jung, M. Horvat, J. Berkmann, and C. Drewes, “Dynamic transmission mode selection in LTE/LTE-Advanced system,” in Proc. IEEE Int. Symp. Applied Sciences in Biomed. and Commun. Technol., Nov. 2010, pp. 1–5. [94]S. Schwarz, M. Wrulich, and M. Rupp, “Mutual information based calculation of the Precoding Matrix Indicator for 3GPP UMTS/LTE,” in Proc. IEEE Int. ITG Workshop Smart Antennas, Feb. 2010, pp. 52–58. [95]B. Varadarajan, E. Onggosanusi, A. Dabak, R. Chen, “Nested codebook design for MIMO precoders,” in Proc. IEEE Asilomar Conf. Signals, Systems and Comp., Oct. 2008, pp. 723–727. [96]3GPP, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2,” Sep. 2008. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36300.htm. [97]3GPP, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8),” Sep. 2009. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36211.htm. [98]S. N. Donthi, and N. B. Mehta, “Performance Analysis of User Selected Subband Channel Quality Indicator Feedback Scheme of LTE,” in Proc. IEEE Global Telecommun. Conf., Dec. 2010, pp. 1–6. [99]S. Sesia, I. Toufik, and M. Baker, LTE – The UMTS Long Term Evolution, From Theory to Practice. John Wiley and Sons, 2009. [100]Z. Bai, C. Spiegel, Bruck, G. H. Bruck, P. Jung, M. Horvat, J. Berkmann, C. Drewes, and B Gunzelmann, “On the physical layer performance with rank indicator selection in LTE/LTE-Advanced system,” in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun., Sep. 2010, pp. 393–398. [101]M. Vu and A. Paulraj, “MIMO Wireless Linear Precoding,” IEEE Signal Process. Mag., vol. 24, no. 5, pp. 86–105, Sep. 2007.
|