跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃浩宸
研究生(外文):Hao-Chen Huang
論文名稱:碳化矽蕭基二極體與矽絕緣閘雙極性電晶體之模擬與設計
論文名稱(外文):Simulation and Design of 4H SiC Schottky Diode and Si IGBT
指導教授:劉致為
指導教授(外文):Chee-Wee Liu
口試委員:連振炘林吉聰張書通
口試日期:2011-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:60
中文關鍵詞:4H-碳化矽蕭基二極體絕緣閘雙極性電晶體變流器
外文關鍵詞:4H-SiCSchottky diodesinsulated gate bipolar transistorinverter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電晶體的微縮已經被用來改善金屬氧化層半導體場效電晶體的性能至少二十年,由於元件微縮已經達到其物理極限,莫爾定律也已經不再適用,如何開發利用其他領域的應用是我們能繼續發展的方向之一。由於全球暖化及綠色能源意識抬頭的影響,電子電力元件漸漸受到各國政府重視,除了在電路上改進之外,元件的特性也是可以改進的方向。
本論文第一部分為4H-碳化矽蕭基二極體的研究。由於傳統蕭基二極體操作在反向偏壓時,有著漏電流過大的缺點,而導致其崩潰電壓過低。我們設計了溝渠(mesa)與接面終結延伸(Junction Termination Extension,JTE)的邊緣終結結構。其優點為可降低崩潰電壓對於JTE濃度參雜的依賴性。第二部份為絕緣閘極雙極性電晶體元件近年來所使用的技術,此部分將介紹不同的技術以及目前最新技術為Trench LPT CSTBT。


Transistor scaling down has been performed in driving CMOS performance improvement for past two decades. By approaching the physical limits, “more than Moore” is a new path to the next decades and application requirement and customer needs will determine which technology is best suited. Furthermore, as the global warming and environmental protection issue getting much attention from the government around the world, the power device is becoming more important for the future green energy application.
In this thesis, the first part is study of 4H-SiC schottky diode. The conventional schottky barrier diodes (SBDs) typically have large leakage current when they are biased in a reverse condition, and their breakdown voltage is low. We design a combination of the mesa and junction termination extension structure to form edge termination of the diodes. The advantage of the mesa structure is reducing the dependence of breakdown voltage on JTE dose.


List of Tables VIII
List of Figures VIII
Chapter 1 Introduction
1.1 Introduction…………………………………………………………1
1.2 Motivation……………………………………………………………3
1.3 Organization…………………………………………………………5
Reference…………………………………………………………………6
Chapter 2 Physic Models
2.1 Introduction of the TCAD tool…………………………………7
2.2 Transport Equations………………………………………………8
2.2.1 Governing Equations for Semiconductor Devices…………8
2.2.2 Drift-Diffusion Equation………………………………………9
2.3 Mobility Model………………………………………………………10
2.3.1 Mobility models combination……………………………………10
2.3.2 Philips Unified Mobility Model………………………………11
2.3.3 Mobility Degradation at Interfaces (Lombardi Model)……11
2.3.4 High-Field Saturation……………………………………………12
2.4 Generation-Recombination Models…………………………………13
2.4.1 Shockley-Read-Hall (SRH) Recombination model………………13
2.4.2 Auger Recombination……………………………………………… 14
2.4.3 Avalanche Generation………………………………………………15
Reference……………………………………………………………………16
Chapter 3 SiC Schottky Barrier Diode Design and Simulation
3.1 Introduction……………………………………………………………18
3.2 Basis Theory……………………………………………………………20
3.2.1 Metal-semiconductor contact rectifier……………………… 21
3.2.2 Current transport mechanisms in the M-S contact………… 23
3.2.3 Current-voltage relationship……………………………………25
3.3 Edge-Termination Technique for High Power Devices…………26
3.3.1 Termination Technique……………………………………………26
3.3.2 Field plate edge termination……………………………………28
3.3.3 Junction termination extension…………………………………31
3.3.4 Mesa structure………………………………………………………33
Reference……………………………………………………………………37
Chapter 4 Recent IGBT Simulation
4.1 IGBT Fundamentals……………………………………………………39
4.2 RESURF and Charge Sharing Theory…………………………………41
4.2.1 RESURF(Reduced Surface Field)…………………………………41
4.2.2 Charge Sharing Theory……………………………………………44
4.3 Simulation Result……………………………………………………50
4.3.1 Light punch through LPT and IGBT………………………………50
4.3.2 Trench gate technology……………………………………………54
4.3.3 CSTBT technology……………………………………………………56
Reference……………………………………………………………………58
Chapter 5 Summary and Future work
5.1 Summary…………………………………………………………………59
5.2 Future work……………………………………………………………59
Reference………………………………………………………………………60
List of Tables
TABLE 3-1 BV vs. P concentration of Junction Termination Extension……33
TABLE 3-2 BV vs. P concentration of Mesa Junction Termination Extension…34
TABLE 3-3 BV vs. Tp of Mesa Junction Termination Extension……35
TABLE 3-4 BV vs. T of Mesa Junction Termination Extension………………35
TABLE 4-1 Comparison of PT and NPT………………………………53
Lists of Figures
Fig. 1-1 Application scope of power device [2]…………………2
Fig. 1-2 Si limit [3]……………………………………………………2
Fig. 1-3 Global photovoltaic inverter market…………………4
Fig. 1-4 Solar inverters properties for the purpose of residential use……………5
Fig. 3-1 Band diagram of a metal/n-type semiconductor contact in thermal equilibrium……………………………………………22
Fig. 3-2 Four basic transport processes across metal-semiconductor under forward bias…………………………………………24
Fig. 3-3 (a) Comparison of electric field strengths inside Schottky diodes (unterminated and terminated) and (b) field enhancement factor, as a function of epilayer doping concentration at a depth of ~0.2μm under the cathode……30
Fig. 3-4 Effect of oxide thickness on electric field distribution…………………30
Fig. 3-5 Comparison of simulated Emax, VBD in a multi-zone JTE structure vs. percentage of ideal charge in the second zone……………………………32
Fig. 3-6 JTE structure with Mesa…………………………34
Fig. 3-7 Depletion region of JTE structure………36
Fig. 3-8 Depletion region of JTE structure with Mesa………36
Fig. 4-1 Vertical IGBT………………………………………………40
Fig. 4-2 A basic RESURF structure…………………………………41
Fig. 4-3 (a) RESURF (Thick Tepi)……………………………………42
Fig. 4-3 (b) RESURF (Medium Tepi)………………………………….42
Fig. 4-3 (c) RESURF (Optimal Tepi)…………………………………………43
Fig. 4-4 Charge sharing…………………………………………………44
Fig. 4-5 Structures: NPT, PT and LPT…………………………………51
Fig. 4-6 Planar LPT IGBT structure………………………………51
Fig. 4-7 Turn off switching…………………………………52
Fig. 4-8 Off state characteristic………………………………52
Fig. 4-9 On state characteristic…………………………………………………………53
Fig. 4-10 Trench IGBT……………………55
Fig. 4-11 Trench IGBT on state characteristic……………55
Fig. 4-12 CSTBT………………………………………………56
Fig. 4-13 Comparison of TIGBT and CSTBT on state characteristic………57
Fig. 4-14 Charge distribution…………………………………………57



[1] B. Jayant Baliga, “Trends in Power Semiconductor Devices” IEEE, Trans. On Electron Device, vol. 43, no. 10, 1996, pp. 1717
[2] L. Lorenz, “More-than-Moore: Technologies for Functional Diversification.” IEDM short course 2008
[3] L. Lorenz, “Fast Switching Power Semiconductor Devices and SMART Power IC’s – An Enabling Technology for Future High Efficient Electronic Systems -.” VLSI-TSA, 2010
[4] L. Lorenz, G. Deboy, A. Knapp and M. Marz, “COOLMOSTM – A New Milestone in High Voltage Power MOS” IEEE, 1999
[5] A. Appels, H. M. J. Vaes, “High voltage thin layer devices (RESURF devices).” IEDM Tech. Dig. 1979, pp. 238-241.
[6] Europe PV Inverter Market Analysis and Forecasts to 2015, 2010
[7] IMS research projection for global photovoltaic inverter market, June 2009.
[8] Tadao Ishikawa. “Grid-connected Photovoltaic Power Systems: Survey of Inverter and Related Protection Equipments.” IEA PVPS, December 2002.
[9] Vinod Kumar Khanna, “The Insulated Gate Bipolar Transistor IGBT Theory and Design.” IEEE Press, 2003
[10] HiSIM HV 1.0.2, Version 1.02 User’s Manual, Hiroshima University & STARC

[11] Sentaurus Device User Guide, Version D-2010.02, Synopsys Inc.
[12] D. B. M. Klassen, “A Unified Mobility Model for Device Simulation-I. Model Equation and Concentration Dependence”. Solid State Electronics, vol. 35, no. 7, pp.953-959,1992
[13] C. Lombardi et al., “A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices”, IEEE transactions on Computer-Aided Design, vol. 7, no. 11, pp. 1164-1171, 1988.
[14] C. Canali et al., “Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature”, IEEE Transactions on Electron Device, vol. ED-22, no. 11, pp. 1045-1047, 1975
[15] D. M. Caughey and R. E. Thomas, “Carrier Mobilities in Silicon Empirically Related to Doping and Field”, Proceeding of the IEEE, vol. 55, no. 12, pp. 2192-2193, 1967.
[16] D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and Measurement of Minority-Carrier Lifetime versus Doping in Diffused Layers of n+-p Silicon Diodes”, IEEE transactions on Electron Devices, vol. ED-29, no. 2, pp. 284-291, 1982
[17] A. Schenk, “A Model for the Field and Temperature Dependence of Shockley-Read-Hall Lifetime in Silicon”, Solid State Electronics, vol. 35, no. 11, pp. 1585-1596, 1992.
[18] L.Huldt, N. G. Nilsson, and K. G. Svantesson, “The Temperature Dependence of band-to band Auger Recombination in Silicon”, Applied Physics Letters, vol. 35, no. 10, pp. 776-777, 1979.
[19] W. Lochmann, A. Haug, “Phonon-assisted Auger Recombination in Si with Direct Calculation of Overlap Integrals”, Solid State Communications, vol. 35, no. 7, pp. 553-556, 1980.
[20] R. Hacker, A. Hangleiter, “Intrinsic Upper Limits of the Carrier Lifetime in Silicon”, Journal of Applied Physics, vol. 75, no. 11, pp. 7570-7572, 1994.
[21] T Lackner, “Avalanche Multiplications in Semiconductors: A modification of Chynoweth’s Law”, Solid State Electronics, vol.34, no. 1, pp. 33-42, 1991
[22] A. G. Chynoweth, “Ionization Rates for Electrons and Holes in Silicon”, Physical Review, vol. 109, no. 5, pp. 1537-1540, 1958.
[23] Braun, Ann. Phys. Chem., 153, 556 (1874).
[24] J. C. Bose, U.S. Patent 775, 840, 1904.
[25] W. Schottky, Halbleitertheorie der Sperrschicht, Vol.26, 843, 1938.
[26] H. A. Bethe, “Theory of the Boundary Layer of Crystal Rectifiers” MIT Radiat Lab. Rep. 42-12, 1942.
[27] S. M. Sze, physics of Semiconductor Devices, 3rd.
[28] B. J. Baliga, Power Semiconductor Devices, pws, 1995.
[29] N. F. Mott, “Note on the contact between a metal and an insulator or semiconductor” MPCPS. Soc. vol.34, 1938.
[30] B. J. Baliga, B. Tech, “High voltage device termination techniques A comparative review” IEE, vol. 129, no. 5, Oct. 1982.
[31] S. M. Sze, G. Gibbons, “Effect of junction curvature on breakdown voltage in semiconductor” Solid State Electronic, vol. 9, pp. 831-845, 1966.
[32] M. C. Tarplee, V. P. Madangarli, Quinchun Zhang, T. S. Sudarshan, “Design Rules for Field Plate Edge Termination SiC Schottky Diodes” IEEE Trans. Electron Devices, vol.48, no. 12, Dec. 2001.
[33] Wirojana Tantraporn, Victor A. K. Temple, “Multiple-Zone Single-Mask Junction Termination Extension-A High-Yield near-ideal breakdown voltage technology” IEEE Trans. Electron Devices, vol. ED-34, no. 10, Oct. 1987.
[34] C. Mingues, G. Charitat, “Efficiency of Junction Termination Techniques vs Oxide Trapped Charges” Proc. ISPSD’97.
[35] D. C. Sheridan, G. Niu, J. Neil Merrett, J. D. Cressler, J. B. Dufrene, J. B. Casady, I. Sankin, “Comparison and Optimization of Edge Termination Techniques for SiC Power Devices” Proc. ISPSD’01.
[36] A. Appels, H. M. J. Vaes, “High voltage thin layer devices (RESURF devices)” IEDM Tech. Dig. 1979, pp. 238-241.
[37] Adriaan W. Ludikhuize, Philip Research, “A review of RESURF technology” ISPSD, 2000, pp. 11-18.
[38] Mohamed Iman, Mohammed Quddus, Jim Adams, Zia Hossain, “Efficacy of Charge Sharing in Reshaping the Surface Electric Field in High-Voltage Lateral RESURF Device.” Transaction on Electron Device, vol. 51, no. 1, 2004, pp 141-148.
[39] B. Salhi, A. Benfdila, “Recent Trends in IGBT Technology” African Physical Review, 2008.
[40] IMS research projection for global photovoltaic inverter market, June 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top