(3.236.222.124) 您好!臺灣時間:2021/05/13 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林以培
研究生(外文):I-Pei Lin
論文名稱:最小頻寬短碼直接序列展頻訊號
論文名稱(外文):Short Code DS-SS Signals With Minimum Bandwidth
指導教授:鐘嘉德鐘嘉德引用關係
口試委員:林嘉慶李穎李志鵬馬杰
口試日期:2011-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:61
中文關鍵詞:正交互補格雷正交互補格雷正交互補格雷正交互補格雷正交互補格雷正交互補格雷正交互補格雷
外文關鍵詞:short code DSSS signalstemporal sidelobe decayingWalsh- Hadamard codesorthogonal complementary Golay codesdiscrete Fourier transform codesmodified Zadoff-Chu codes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中研究可實現最小奈奎斯(Nyquist)頻寬短碼直接序列展頻訊號 (Short Code Direct Sequence Spreading Spectrum Signals) 之執行可行性及訊號之時間旁波(Temperal Sidelobe)特性。提出的短碼直接序列展頻訊號為限頻且可實現,不像傳統限頻短碼直接序列展頻訊號使用方均根餘弦(Square-Root Raised Cosine)濾波器需要消費額外的頻寬。我們提出一廣義限制保證短碼直接序列展頻訊號可以實現,且使用之短碼顯示出時間旁波隨著|t|^(-K-1)之速率快速衰減,其中K是一個與展頻碼有關的非負整數參數。基於此一廣義限制,存在的短碼包括沃爾什哈達碼 (Walsh Hadamard, WH Codes)、正交互補格雷碼(Orthogonal Complementary Golay, OCG Codes)、複利葉轉換碼(Discrete Fourier Transform, DFT Codes)與修改式扎德朱碼(Modified Zadoff-Chu, Modified ZC Codes)被評估為實現可行性就最小奈奎斯頻寬直接序列展頻訊號方面。最後,本篇論文亦分析可實現訊號格式使用沃爾什哈達碼、正交互補格雷碼、複利葉轉換碼與修改式扎德朱碼及相關時間旁波衰減速率特性可完全由其引數 (Code Indices) 來描述。

In this thesis, short-code direct-sequence-spreading-spectrum (DSSS) signals occupying minimum Nyquist bandwidth are investigated in terms of implementation feasibility and associated with the analysis of the property of temporal sidelobe decaying. The proposed short-code DSSS signals are bandlimited and realizable without consuming any excess bandwidth, as is required in traditional bandlimited short-code DSSS signals using the square-root raised cosine (SRRC) pulse shaping. A general constraint on short code is developed to guarantee that a short-code DSSS signal is realizable and exhibits fast-decaying temporal sidelobes which decay asymptotically as |t|^(-K-1), with K being a positive-integer-valued design parameter. Based on the constraint, existing short codes including Walsh-Hadamard (WH), orthogonal complementary Golay (OCG), discrete Fourier transform (DFT), and modified Zadoff-Chu (ZC) codes, are evaluated for realization feasibility in terms of the minimum-Nyquist-bandwidth DSSS signaling format. It is analytically shown that the realizable signaling formats using WH, OCG, DFT, and modified ZC codes and the corresponding temporal sidelobe decaying properties can be completely described by their code indices.

中文摘要...................................................i
英文摘要..................................................ii
目錄.....................................................iii
圖形目錄..................................................iv
第一章 緒論................................................1
第一節 直接序列展頻技術....................................1
第二節 部分響應訊號........................................3
第三節 研究動機和目的......................................5
第二章 最小頻寬短碼直接序列展頻訊號系統架構及其能量特性....7
第一節 最小頻寬短碼直接序列展頻訊號模型....................7
第二節 調變架構設計.......................................10
第三節 解調變架構設計.....................................13
第四節 時間旁波衰減特性...................................15
第五節 時間旁波衰減階數限制...............................17
第三章 沃爾什哈達碼之應用及數值結果.......................19
第四章 正交互補格雷碼之應用及數值結果.....................28
第五章 正交互補格雷碼之應用及數值結果.....................37
第六章 結論...............................................48
參考文獻..................................................50
附錄......................................................53
中英對照表................................................58


[1] Andrea Goldsmith, Wireless Communications, Cambridge University Press, 2005.
[2] T. Ojanpera and R. Prasad, “An overview of air interface multiple access for IMT-2000/UMTS,” IEEE Commun. Mag., vol. 36, pp. 82–95, Sept 1998.
[3]Tang, K., P. H. Siegel and L. B. Milstein, “A comparison of long versus short spreading sequences in coded asynchronous DS-CDMA systems,” IEEE Journal on Selected Areas in Communications, vol. 19, no. 8, pp. 1614-1624, Aug. 2001.
[4] M. Moeneclaey, M. V. Bladel, and H. Sari, “Sensitivity of multiple-access techniques to narrowband interference,” IEEE Trans. Commun., vol. 49, pp. 497-505, Mar. 2001.
[5] S. Nobilet, J. Helard, and D. Mottier, “Spreading Sequence for Uplink and Downlink MC-CDMA Systems: PAPR and MAI Minimization,” European Trans. Telecommun., vol. 13, no. 5, pp. 465-474, Sep.-Oct. 2002.
[6] M. J. E. Golay, “Complementary Series,” IRE Trans. Inform. Theory, vol. IT-7, pp. 82-97, Apr. 1961.
[7] Y. Li, J.-H. Kyung, J.-W. Son, and H.-G. Ryu, “PAPR reduction in MC/DS CDMA system by DFT spreading codes,” in Proceedings of the 3rd International Conference on Information Technology and Applications (ICITA ''05), vol. 2, pp. 326–329, July 2005.
[8] R. C. Heimiller, “Phase Shift Pulse Codes With Good Periodic Correlation Properties, ” IRE Trans. Inform. Theory, vol. IT-7, pp. 254-257, Oct. 1961.
[9] I. Baig and V. Jeoti, “PAPR Reduction in OFDM Systems: Zadoff-Chu Matrix Transform Based Pre/Post-Coding Techniques,” Second IEEE International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), pp. 373 – 377. Apr. 1961.
[10] J. G. Proakis and M. Salehi, Digital Communications, 5th edition, McGraw Hill, 2008.
[11] Hans.B. Peek, “Multirate Modulation: a bandwidth- and power-efficient modulation scheme,” IEEE Trans. on Commun., pp. 1679 - 1687, Vol, 53, Oct. 2005.
[12] C.-D. Chung and W.-C. Chen, “Orthogonal Multirate Modulation,” Manuscript submitted for publication.
[13] Y. Lin, H. H. Chen, and Z. H. Jiang, etc., “Image Resizing with Raised Cosine Pulses,” Proceedings of 2004 International Symposium on Intelligent Signal Processing and Communication Systems, the Institute of Electrical and Electronics Engineers, Inc., U.S.A, November 2004, pp. 581-585.
[14]林家慶,2009,《多載波分碼多重存取及正交頻率分碼多工信號之頻譜旁波特性及其應用》,國立台灣大學電機資訊學院電信工程學研究所碩士論文。
[15] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. New York: Academic Press, 1994.
[16] C.-D. Chung, “Spectral Precoding for Rectangularly Pulsed OFDM,” IEEE Trans. Commun., vol. 56, no. 9, pp. 1498-1510, Sep. 2008.
[17] M. Wichers, W. Kaiser and W. Rosenkranz, “ Improved dispersion tolerance of duobinary optical transmission considering the influence of duobinary filters and optical input power,” ICTON 2000. pp. 5-8.
[18] J. H. Sinsky, M. Duelk, and A. Adamiecki, “High-speed electrical backplane transmission using duobinary signaling,” IEEE Trans. MTT, vol.53, no. 1, Jan. 2005, pp. 152-160.
[19] G. Nigam, R. Singh and A.K. Chaturvedi, “Finite Duration Root Nyquist Pulses with Maximum In-band Fractional Energy,” IEEE Commun. Lett., vol.14, pp. 797–799, Sep. 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔