跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 10:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周文彬
研究生(外文):Wen-Pin Chou
論文名稱:一種新式核酸擴增系統之研究-毛細管熱對流聚合酶連鎖反應
論文名稱(外文):Development of a Novel Nucleic Acid Amplification System-Capillary Convective Polymerase Chain Reaction
指導教授:陳炳煇陳炳煇引用關係
口試委員:葉秀慧張正李達生苗志銘
口試日期:2011-01-24
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:90
中文關鍵詞:聚合酶聚合酶聚合酶聚合酶
外文關鍵詞:ConvectionPolymerase chain reactionNucleic acids testing
相關次數:
  • 被引用被引用:5
  • 點閱點閱:499
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚合酶連鎖反應(Polymerase Chain reaction, PCR) 需三個不同溫度的反應步驟,分別為雙股裂解、引子黏合和引子延伸,大部分傳PCR統機台利用金屬塊加熱試管以進行溫度迴圈,升降溫過程所耗的時間導致傳統PCR完成45個迴圈需要2小時左右,耗時與價格不斐的溫控裝置讓PCR儀器無法成為居家檢測之儀器。本篇論文提出一新型的核酸擴增技術-「毛細管熱對流聚合酶連鎖反應」,此技術僅需一個乾浴槽(dry bath),其為每個實驗室中必備的設備,加熱試管底部並利用環境溫度冷卻試管,管內的試劑因上下試劑之密度不同而形成一自然對流之流體迴路,讓試劑進行PCR三大步驟。此方法讓試劑液體自發性的流動而變溫,縮短機台因加熱和冷卻所需要花耗的時間。如此無需昂貴的熱循環儀,每個實驗室即可進行核酸的檢測。而如何讓液體試劑在反應管內穩定循環且進行有效率的PCR反應是本技術成功擴增的兩大關鍵。因此,本篇論文著重於兩大參數的探討:第一、反應管的直徑與高度比參數,決定是否能在試劑底部至頂部建立足夠的溫差已達到PCR三個反應溫度且維持一穩定環流;第二、熱對流循環的PCR試劑設計準則,本技術在反應過程中為持續經過不同溫度梯度的對流循環,故必須有與傳統PCR不同的試劑設計才能提高其擴增成功率。本篇論文成功研究出所需之物理参數與特殊試劑設計準則,利用本技術擴增不同病毒的質體DNA,在25 分鐘內皆可擴增完畢;用真實檢體測試下靈敏度達 30 copies/tube。除此也針對不同的病毒設計熱對流PCR專屬試劑,如新型流感病毒(H1N1)、蝦白斑病毒(WSSV)與人類BK多瘤病毒(BKV),其測試後的結果與傳統PCR機台一致。為了未來簡易檢測之需求,本論文也探討含鎖核酸(Locked Nucleic Acids, LNA)的引子可否避免不必要的擴增副產物。本論文的未來方向是盼望架構於本技術下發展出便宜、便利、非專業人員即可現場操作檢測技術,可對人類和動植物傳染性疾病的防治有一定的助益。

A typical polymerase chain reaction (PCR) is a process containing three temperature steps for denaturation, annealing and elongation. In a traditional thermal cycler, metal block is used to heat or cool the reaction tubes, and more than two hours are needed for 45 cycles of the repeat heating and cooling steps. However, expensive thermal controller and long time-consuming made thermal cyclers are not suitable in self-test for personal use.
In this study we describe a new method for DNA amplification using a principle of convection. In this platform, only a dry bath is required for heating the bottom of the reaction tube. Then the tube is cooled by the surrounding air by which the reagent in the tube forming convection repeatly. Thus, reaction mixture in the tube should undergo the three steps of PCR in the convection. This kind of convection in the tube is just like the phenomenon during water is boiled and it makes the reagents in the tube should fluid spontaneously to achieve different temperatures. This technique can shorten the amplification time prominently and solve the traditional problem for long time-consuming process during heating and cooling. By this way, no expensive equipment is needed and it makes this new method feasible to be used in almost all the laboratories. The key point of successful working of this platform is how to make the fluid reagent mixture of PCR reaction in the tube to form a stable and efficient convection. Here we focus on two important parameters. One is the ratio between height and diameter of the reaction tube, which determines whether the temperature gradient from the bottom to top can fulfill the three-step temperatures needed in the PCR reaction. The other is the criterions of the reagents designed in convective PCR. Because reagents in convective PCR reaction undergo a continued temperature gradient which is different from traditional PCR, it requires particular criterions for reagents in order to improve the level of yield and the rate of success. In this study, we also provide the physical parameters and design criterions of particular reagents for successful convective PCR. Using this newly established method, DNA amplification could be completed within 25 minutes and the sensitivity was measured to reach 30 copies/per tube. Besides, specific reagents were also designed for various virues, including new influenza virus H1N1, white spot syndrome virus (WSSV), and polyomavirus (BKV). Moreover, we also explore whether primers conjugated with LNA should avoid side products in the amplification.
We will focus on developing a cheaper and more convenient technique for examination using our established platform on site, where it could be operated by persons without well-training. We also believe this study will provide a new direction and will be helpful and useful in the future in controlling infectious disease for human, animal and plants.


目錄
口試委員會審定書…………………………………………………Ⅰ
中文摘要 ……………………………………………………………Ⅱ
英文摘要……………………………………………………………Ⅲ
目 錄……………………………………………………………Ⅴ
附表目錄……………………………………………………………Ⅶ
附圖目錄……………………………………………………………Ⅷ
符號說明……………………………………………………………Ⅹ

第一章 緒論…………………………………………………………1
1.1 前言………………………………………………………………1
1.2 研究動機與目的…………………………………………………5
1.3 文獻回顧…………………………………………………………6
1.4 論文架構…………………………………………………………10
第二章 實驗原理與分析方法………………………………………11
2.1.1 聚合酶連鎖反應………………………………………………11
2.1.2 操作原理…....………………………………………………12
2.2 洋菜凝膠電泳、融解曲線與紫外光吸收檢測之原理…………15
2.2.1 洋菜凝膠電泳分離……………………………………………15
2.2.2 紫外光吸收檢測………………………………………………16
2.2.3 融解曲線分析…………………………………………………16
2.3 熱對流運作原理…………………………………………………17
第三章 實驗設備與研究步驟………………………………………18
3.1 實驗試劑與化學藥品……………………………………………18
3.1.1 聚合酶連鎖反應實驗…………………………………………18
3.1.2 洋菜凝膠電泳檢測分析………………………………………19
3.1.3 螢光融解曲線…………………………………………………20
3.2 實驗設備…………………………………………………………20
3.2.1 測試容器………………………………………………………20
3.2.2 毛細管熱對流聚合酶連鎖反應(CCPCR)裝置………………21
3.2.3 洋菜凝膠電泳檢測系統………………………………………21
3.2.4 流場可視化……………………………………………………21
3.2.5 溫度量測系統.………………………………………………22
3.3 研究步驟…………………………………………………………22
第四章 實驗結果與討論……………………………………………25
4.1 反應試管的選擇和驗證…………………………………………25
4.1.1 管徑之數值分析結果…………………………………………26
4.1.2 溫度量測結果…………………………………………………29
4.1.3 流場觀測結果…………………………………………………30
4.2 引子融合溫度和擴增片段的裂解溫度對CCPCR增生效率的影響……………………………………………………………………31
4.3 熱對流PCR試劑參數之最佳化及本平台之驗證………………34
4.3.1 CCPCR試劑參數之最佳化……………………………………34
4.3.2 CCPCR靈敏度測試和反應時間的探討………………………35
4.3.3 CCPCR真實檢體與多種病毒測試……………………………37
4.3.4 鎖核酸引子於CCPCR上的改善與應用………………………38
第五章 結論與未來展望 …………………………………………41
參考文獻 ……………………………………………………………44


1.Saiki, R.K., S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich, and N. Arnheim. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350-1354.
2.Silverman, G.A. 1996. End-rescue of YAC clone inserts by inverse PCR. Methods Mol Biol 54:145-155.
3.Tewhey, R., J.B. Warner, M. Nakano, B. Libby, M. Medkova, P.H. David, S.K. Kotsopoulos, M.L. Samuels, et al. 2009. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 27:1025-1031.
4.Ramos, C.G., A.M. Grilo, S.A. Sousa, M.L. Barbosa, H. Nadais, and J.H. Leitao. 2010. A new methodology combining PCR, cloning, and sequencing of clones discriminated by RFLP for the study of microbial populations: application to an UASB reactor sample. Appl Microbiol Biotechnol 85:801-806.
5.Haak, W., J. Burger, and K.W. Alt. 2004. ABO genotyping by PCR-RFLP and cloning and sequencing. Anthropol Anz 62:397-410.
6.Benson, R., M.L. Tondella, J. Bhatnagar, G. Carvalho Mda, J.S. Sampson, D.F. Talkington, A.M. Whitney, E. Mothershed, et al. 2008. Development and evaluation of a novel multiplex PCR technology for molecular differential detection of bacterial respiratory disease pathogens. J Clin Microbiol 46:2074-2077.
7.Reinton, N., A. Helgheim, H. Shegarfi, and A. Moghaddam. 2006. A one-step real-time PCR assay for detection of DQA1*05, DQB1*02 and DQB1*0302 to aid diagnosis of celiac disease. J Immunol Methods 316:125-132.
8.Tiwari, A.K., R.S. Kataria, T. Nanthakumar, B.B. Dash, and G. Desai. 2004. Differential detection of Newcastle disease virus strains by degenerate primers based RT-PCR. Comp Immunol Microbiol Infect Dis 27:163-169.
9.Qiu, X. and J. Yuan. 2005. Temperature control for PCR thermocyclers based on peltier-effect thermoelectric. Conf Proc IEEE Eng Med Biol Soc 7:7509-7512.
10.Wittbrodt, J. and W. Erhardt. 1989. An inexpensive and versatile computer-controlled PCR machine using a Peltier Element as a thermoelectric heat pump. Trends Genet 5:202-203.
11.Gill, P. and A. Ghaemi. 2008. Nucleic acid isothermal amplification technologies: a review. Nucleosides Nucleotides Nucleic Acids 27:224-243.
12.Krishnan, M., V.M. Ugaz, and M.A. Burns. 2002. PCR in a Rayleigh-Benard convection cell. Science 298:793.
13.Krishnan, M., N. Agrawal, M.A. Burns, and V.M. Ugaz. 2004. Reactions and fluidics in miniaturized natural convection systems. Anal Chem 76:6254-6265.
14.Chen, Z., S. Qian, W.R. Abrams, D. Malamud, and H.H. Bau. 2004. Thermosiphon-based PCR reactor: experiment and modeling. Anal Chem 76:3707-3715.
15.Braun, D., N.L. Goddard, and A. Libchaber. 2003. Exponential DNA replication by laminar convection. Phys Rev Lett 91:158103.
16.Wheeler, E.K., W. Benett, P. Stratton, J. Richards, A. Chen, A. Christian, K.D. Ness, J. Ortega, et al. 2004. Convectively driven polymerase chain reaction thermal cycler. Anal Chem 76:4011-4016.
17.Agrawal, N., Y.A. Hassan, and V.M. Ugaz. 2007. A pocket-sized convective PCR thermocycler. Angew Chem Int Ed Engl 46:4316-4319.
18.Hennig, M., and Braun, D. 2005. Convective polymerase chain reaction around micro immersion heater. Appl. Phys. Lett. 87:183901-183903.
19.Milanez, L.F., Marcelo, G. 1995. Natural convection in rectangular enclosures heated from below and symmetrically cooled from the sides. lnt. J. Heat Mass Transfer 38:1063-1073.
20.Masato, A., Mitsuo, H., Yoshio, T., and Hiroyuki O. 2005. Numerical computation of magnetothermal convection of water in a vertical cylindrical enclosure. Int. J. Heat and Fluid Flow 26:622-634.
21Von Ahsen, N., C.T. Wittwer, and E. Schutz. 2001. Oligonucleotide melting temperatures under PCR conditions: nearest-neighbor corrections for Mg(2+), deoxynucleotide triphosphate, and dimethyl sulfoxide concentrations with comparison to alternative empirical formulas. Clin Chem 47:1956-1961.
22.Henegariu, O., N.A. Heerema, S.R. Dlouhy, G.H. Vance, and P.H. Vogt. 1997. Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23:504-511.
23.Kainz, P. 2000. The PCR plateau phase - towards an understanding of its limitations. Biochim Biophys Acta 1494:23-27.
24.Morrison, C. and F. Gannon. 1994. The impact of the PCR plateau phase on quantitative PCR. Biochim Biophys Acta 1219:493-498.
25.Vandesompele, J., A. De Paepe, and F. Speleman. 2002. Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real-time RT-PCR. Anal Biochem 303:95-98.
26.Brownie, J., S. Shawcross, J. Theaker, D. Whitcombe, R. Ferrie, C. Newton, and S. Little. 1997. The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res 25:3235-3241.
27.Kumar, R., S.K. Singh, A.A. Koshkin, V.K. Rajwanshi, M. Meldgaard, and J. Wengel. 1998. The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2''-thio-LNA. Bioorg Med Chem Lett 8:2219-2222.
28. 陳培哲,2008,97年度衛生署年度補(捐)助科技計畫成果報告,國立台灣大學醫學院,台北。
29. 謝一帆,2007,單一溫控熱對流聚合酶連鎖反應系統之開發與研究,國立台灣大學機械工程學研究所碩士論文,台北。





QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top