跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳永明
研究生(外文):Yung-Ming Chen
論文名稱:利用介電泳效應研製具重覆記憶功能之CNT/PDMS壓力與溫度感測器
論文名稱(外文):A novel CNT-PDMS-based pressure and temperature sensor with resistivity retaining and recovering by using dielectrophoresis effect
指導教授:楊燿州楊燿州引用關係
指導教授(外文):Yao-Joe Yang
口試委員:陳國聲蘇裕軒
口試日期:2011-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:96
中文關鍵詞:導電高分子壓力感測器觸覺感測器介電泳奈米碳管聚二甲基矽氧烷
外文關鍵詞:Conductive polymerpressure sensortactile sensordielectrophoresiscarbon nanotubePDMS
相關次數:
  • 被引用被引用:2
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在本研究中,我們率先提出了一種複合記憶及清除功能之電阻式壓力與溫度感測器,此感測材料是由導電高分子構成,我們將奈米碳管(carbon nanotubes)與奈米銀粉(silver nano-particles)分散在聚二甲基矽氧烷 (polydimethylsiloxane, PDMS)中製作成導電高分子溶液,再將此溶液滴於電極層上並施加交流電壓進行介電泳,奈米碳管受介電泳力的影響,排列於電極之間並且形成奈米碳管導電網路,待高分子固化成型後即完成此新型壓力感測器的製作。本感測單元具有獨特的電阻感測機制:當感測單元承受壓力時,導電高分子內的奈米碳管導電網路因受壓而破壞,而造成感測單元的電阻率上升,而當壓力移除後電阻率不因壓力的去除而回復,若再次進行介電泳,被破壞的奈米碳管導電網路將可重新構成,使感測單元恢復初始電阻率。此外,感測單元對於溫度上升造成電阻率變化,以及使用介電泳恢復初始電阻率,皆有相同的感測機制。在本研究中,我們展示了感測單元的特性及重複性,並且探討不同電極間距造成之影響,此外,我們也發展了 可撓式壓力感測陣列,並利用感測陣列之壓力分佈圖展示影像記憶及清除功能。此感測器可望廣泛應用於智慧型足跡記憶地毯、壓力感測器、溫度感測器、加速度開關、溫度開關等相關產品之研製。

In this work, we present novel resistive pressure and temperature sensors with reversible signal tracking capabilities. The sensing material was prepared by dispersing multi-walled carbon nanotubes (CNTs) and silver nano-particles through polydimethylsiloxane (PDMS) polymer with the assistance of the dielectrophoresis (DEP) technique. When the sensing element is pressed, a number of conductive CNT networks within the polymer are broken, thereby increasing the resistivity of the element. The polymer retains resistivity following the removal of the external force, and resistivity can be recovered to the original value using DEP to reform the conductive CNT networks. Similar resistivity behaviors induced by temperature elevation and DEP were also observed. This study demonstrates the performance and repeatability of the proposed sensing elements and investigates the characteristics of devices with various electrode gaps. We also fabricated flexible tactile sensor array and demonstrated image retaining and erasing capabilities. The potential applications of the sensor include reusable footstep tracking carpets, inertia switches, temperature switches, and other applications.

致謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 導電高分子 2
1.2.2 奈米碳管導電高分子 6
1.2.2.1 奈米碳管無方向性排列之導電高分子 6
1.2.2.2 奈米碳管有方向性排列之導電高分子 11
1.2.3 排列奈米碳管方法 16
1.2.4 介電泳操縱奈米碳管及其應用 20
1.3 研究動機與目的 30
1.4 論文架構 31
第二章 基礎理論與元件設計 32
2.1 導電高分子之導電機制 32
2.1.1 高分子基材 32
2.1.2 導電粒子 32
2.1.3 導電高分子之導電機制 33
2.2 奈米碳管之改質與分散 34
2.3 介電泳原理 36
2.3.1 介電泳效應 36
2.3.2 介電泳原理 37
2.4 本研究之元件設計與電阻感測機制 39
2.4.1 元件設計 39
2.4.1.1 感測單元 40
2.4.1.2 感測陣列 41
2.4.2 電阻感測機制 41
第三章 製程方法與步驟 43
3.1 感測單元製作流程 43
3.1.1 光罩設計與製作 45
3.1.2 基材清洗 46
3.1.3 金屬蒸鍍 47
3.1.4 微影製程 48
3.1.5 金屬蝕刻 52
3.1.6 晶圓切割 53
3.1.7 溶液配製 54
3.1.8 介電泳排列奈米碳管 56
3.1.9 固化成型 56
3.1.10 感測單元製作結果 56
3.2 可撓式壓力感測陣列製作流程 60
3.2.1 軟性印刷電路板技術 62
3.2.2 可撓性感測陣列製作結果 63
第四章 實驗量測與討論 64
4.1 感測單元承受壓力之特性量測 64
4.1.1 量測設備架設 64
4.1.2 量測結果與討論 65
4.2 感測單元承受溫度變化之特性量測 70
4.2.1 實驗平台架設 70
4.2.2 量測結果與討論 71
4.3 可撓式壓力感測陣列 74
4.3.1 掃瞄電路系統 74
4.3.2 感測陣列之量測 75
第五章 結論與未來展望 78
5.1 結論 78
5.2 未來展望 79
參考文獻 80
附錄A 89
附錄B 94


[1]M. Y. Cheng, C. M. Tsao, Y. Z. Lai, and Y. J. Yang, "The development of a highly twistable tactile sensing array with stretchable helical electrodes," Sensors and Actuators a-Physical, vol. 166, pp. 226-233, 2011.
[2]L. H. Wang, F. F. Ma, Q. S. Shi, H. H. Liu, and X. T. Wang, "Study on compressive resistance creep and recovery of flexible pressure sensitive material based on carbon black filled silicone rubber composite," Sensors and Actuators a-Physical, vol. 165, pp. 207-215, 2011.
[3]A. T. Sellinger, D. H. Wang, L. S. Tan, and R. A. Vaia, "Electrothermal Polymer Nanocomposite Actuators," Advanced Materials, vol. 22, pp. 3430-3435, 2010.
[4]K. Yuse, D. Guyomar, M. Kanda, L. Seveyrat, and B. Guiffard, "Development of large-strain and low-powered electro-active polymers (EAPs) using conductive fillers," Sensors and Actuators a-Physical, vol. 165, pp. 147-154, 2011.
[5]V. P. Verma, S. Das, I. Lahiri, and W. Choi, "Large-area graphene on polymer film for flexible and transparent anode in field emission device," Applied Physics Letters, vol. 96, 2010.
[6]N. Kishi, T. Kita, A. Magario, and T. Noguchi, "Field-emission properties of carbon nanotube composite in side-electron emission configuration," Journal of Applied Physics, vol. 109, 2011.
[7]H. S. Shin, K. H. Baek, S. S. Park, K. C. Song, G. W. Lee, H. D. Lee, J. S. Wang, K. Lee, and L. M. Do, "Maskless Laser Direct Patterning of PEDOT/PSS Layer for Soluble Process Organic Thin Film Transistor," Journal of Nanoscience and Nanotechnology, vol. 10, pp. 3185-3188, 2010.
[8]K. Hong, S. H. Kim, C. Yang, T. K. An, H. Cha, C. Park, and C. E. Park, "Photopatternable, highly conductive and low work function polymer electrodes for high-performance n-type bottom contact organic transistors," Organic Electronics, vol. 12, pp. 516-519, 2011.
[9]L. Nguyen, F. Mighri, Y. Deyrail, and S. Elkoun, "Conductive Materials for Proton Exchange Membrane Fuel Cell Bipolar Plates Made from PVDF, PET and Co-continuous PVDF/PET Filled with Carbon Additives," Fuel Cells, vol. 10, pp. 938-948, 2010.
[10]J. Yano, T. Shiraga, and A. Kitani, "Dispersed platinum and tin polyaniline film electrodes for the anodes of the direct methanol fuel cell," Journal of Solid State Electrochemistry, vol. 12, pp. 1179-1182, 2008.
[11]J. R. Lu, X. F. Chen, W. Lu, and G. H. Chen, "The piezoresistive behaviors of polyethylene/foliated graphite nanocomposites," European Polymer Journal, vol. 42, pp. 1015-1021, 2006.
[12]M. K. Abyaneh and S. K. Kulkarni, "Giant piezoresistive response in zinc-polydimethylsiloxane composites under uniaxial pressure," Journal of Physics D-Applied Physics, vol. 41, 2008.
[13]S. Jiguet, A. Bertsch, H. Hofmann, and P. Renaud, "Conductive SU8 photoresist for microfabrication," Advanced Functional Materials, vol. 15, pp. 1511-1516, 2005.
[14]T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, "Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 12321-12325, 2005.
[15]Y. J. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, Y. Chang, S. H. Chang, and K. C. Fan, "An integrated flexible temperature and tactile sensing array using PI-copper films," Sensors and Actuators A-Physical, vol. 143, no. 1, pp. 143-145, 2008.
[16]M. Y. Cheng, W. Y. Chang, L. C. Tsao, Y. J. Yang "Design and fabrication of an artificial skin using PI-copper films," 20th IEEE International Conference on Microelectromechanical Systems (MEMS 2007), pp. 389-392, 2007.
[17]S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature, vol. 354, pp. 56-58, 1991.
[18]J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, "Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites," Polymer, vol. 44, pp. 5893-5899, 2003.
[19]J. Engel, J. Chen, N. Chen, S. Pandya, and C. Liu, “Multi-walled carbon nanotube filled conductive elastomers: materials and application to micro transducers,” 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2006), pp. 246-249, 2006.
[20]T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, "A rubberlike stretchable active matrix using elastic conductors," Science, vol. 321, pp. 1468-1472, 2008.
[21]K. Lee, S. S. Lee, J. A. Lee, K. C. Lee, and S. Ji, "Carbon nanotube film piezoresistors embedded in polymer membranes," Applied Physics Letters, vol. 96, 2010.
[22]X. H. Song, S. Liu, Z. Y. Gan, Q. Lv, H. Cao, and H. Yan, "Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing," Microelectronic Engineering, vol. 86, pp. 2330-2333, 2009.
[23]F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler, and K. Schulte, "Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content," Composites Science and Technology, vol. 64, pp. 2363-2371, 2004.
[24]Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, "Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications," Nano Letters, vol. 6, pp. 413-418, 2006.
[25]F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. H. Ye, G. L. Yang, C. Li, and P. Willis, "Electrospinning of continuons carbon nanotube-filled nanofiber yarns," Advanced Materials, vol. 15, pp. 1161-1165, 2003.
[26]E. Camponeschi, R. Vance, M. Al-Haik, H. Garmestani, and R. Tannenbaum, "Properties of carbon nanotube-polymer composites aligned in a magnetic field," Carbon, vol. 45, pp. 2037-2046, 2007.
[27]J. F. Dai, Q. Wang, W. X. Li, Z. Q. Wei, and G. J. Xu, "Properties of well aligned SWNT modified poly (methyl methacrylate) nanocomposites," Materials Letters, vol. 61, pp. 27-29, 2007.
[28]Y. Y. Zhang, C. J. Sheehan, J. Y. Zhai, G. F. Zou, H. M. Luo, J. Xiong, Y. T. Zhu, and Q. X. Jia, "Polymer-Embedded Carbon Nanotube Ribbons for Stretchable Conductors," Advanced Materials, vol. 22, pp. 3027-3031, 2010.
[29]H. W. C. Postma, A. Sellmeijer, and C. Dekker, "Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope," Advanced Materials, vol. 12, pp. 1299-1302, 2000.
[30]M. C. LeMieux, M. Roberts, S. Barman, Y. W. Jin, J. M. Kim, and Z. N. Bao, "Self-sorted, aligned nanotube networks for thin-film transistors," Science, vol. 321, pp. 101-104, 2008.
[31]K. Yamamoto, S. Akita, and Y. Nakayama, "Orientation and purification of carbon nanotubes using ac electrophoresis," Journal of Physics D-Applied Physics, vol. 31, pp. L34-L36, 1998.
[32]J. Q. Li, Q. Zhang, Y. H. Yan, S. Li, and L. Q. Chen, "Fabrication of carbon nanotube field-effect transistors by fluidic alignment technique," IEEE Transactions on Nanotechnology, vol. 6, pp. 481-484, 2007.
[33]M. D. Lynch and D. L. Patrick, "Organizing carbon nanotubes with liquid crystals," Nano Letters, vol. 2, pp. 1197-1201, 2002.
[34]Y. G. Zhang, A. L. Chang, J. Cao, Q. Wang, W. Kim, Y. M. Li, N. Morris, E. Yenilmez, J. Kong, and H. J. Dai, "Electric-field-directed growth of aligned single-walled carbon nanotubes," Applied Physics Letters, vol. 79, pp. 3155-3157, 2001.
[35]X. Q. Chen, T. Saito, H. Yamada, and K. Matsushige, "Aligning single-wall carbon nanotubes with an alternating-current electric field," Applied Physics Letters, vol. 78, pp. 3714-3716, 2001.
[36]P. F. Li and W. Xue, "Selective Deposition and Alignment of Single-Walled Carbon Nanotubes Assisted by Dielectrophoresis: From Thin Films to Individual Nanotubes," Nanoscale Research Letters, vol. 5, pp. 1072-1078, 2010.
[37]R. Krupke, F. Hennrich, H. von Lohneysen, and M. M. Kappes, "Separation of metallic from semiconducting single-walled carbon nanotubes," Science, vol. 301, pp. 344-347, 2003.
[38]X. M. Liu, J. L. Spencer, A. B. Kaiser, and W. M. Arnold, "Selective purification of multiwalled carbon nanotubes by dielectrophoresis within a large array," Current Applied Physics, vol. 6, pp. 427-431, 2006.
[39]J. E. Kim, J. K. Park, and C. S. Han, "Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: experimental investigation," Nanotechnology, vol. 17, pp. 2937-2941, 2006.
[40]L. T. Liu, X. Y. Ye, K. Wu, R. Han, Z. Y. Zhou, and T. H. Cui, "Humidity Sensitivity of Multi-Walled Carbon Nanotube Networks Deposited by Dielectrophoresis," Sensors, vol. 9, pp. 1714-1721, 2009.
[41]J. Suehiro, G. B. Zhou, and M. Hara, "Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy," Journal of Physics D-Applied Physics, vol. 36, pp. L109-L114, 2003.
[42]J. Q. Li, Q. Zhang, D. J. Yang, and J. Z. Tian, "Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method," Carbon, vol. 42, pp. 2263-2267, 2004.
[43]C. M. K. M. Fung, V. T. S. Wong, R. H. M. Chan, and W. J. Li, "Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors," IEEE Transactions on Nanotechnology, vol. 3, pp. 395-403, 2004.
[44]H. J. Herrmann, B. Derrida, and J. Vannimenus, "Superconductivity Exponents in Two-Dimensional and 3-Dimensional Percolation," Physical Review B, vol. 30, pp. 4080-4082, 1984
[45]M. J. Jiang, Z. M. Dang, S. H. Yao, and J. B. Bai, "Effects of surface modification of carbon nanotubes on the microstructure and electrical properties of carbon nanotubes/rubber nanocomposites," Chemical Physics Letters, vol. 457, pp. 352-356, 2008.
[46]A. M. Shanmugharaj, J. H. Bae, K. Y. Lee, W. H. Noh, S. H. Lee, and S. H. Ryu, "Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites," Composites Science and Technology, vol. 67, pp. 1813-1822, 2007.
[47]T. P. Chua, M. Mariatti, A. Azizan, and A. A. Rashid, "Effects of surface-functionalized multi-walled carbon nanotubes on the properties of poly(dimethyl siloxane) nanocomposites," Composites Science and Technology, vol. 70, pp. 671-677, 2010.
[48]X. H. Men, Z. Z. Zhang, H. J. Song, K. Wang, and W. Jiang, "Functionalization of carbon nanotubes to improve the tribological properties of poly(furfuryl alcohol) composite coatings," Composites Science and Technology, vol. 68, pp. 1042-1049, 2008.
[49]M. P. Hughes, "AC electrokinetics: applications for nanotechnology," Nanotechnology, vol. 11, pp. 124-132, 2000.
[50]M. Dimaki and P. Boggild, "Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study," Nanotechnology, vol. 15, pp. 1095-1102, 2004
[51]C. Zhang, K. Khoshmanesh, F. J. Tovar-Lopez, A. Mitchell, W. Wlodarski, and K. Klantar-Zadeh, "Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles," Microfluidics and Nanofluidics, vol. 7, pp. 633-645, 2009.
[52]廖信宏, "微機電式數位類比轉換反射鏡模組之研製及在白光干涉系統之應用," 國立台灣大學博士論文, 2010.
[53]D. J. Elliott, Integrated Circuit Fabrication Technology, 2nd Ed., McGraw Hill, 1989.
[54]M. Y. Cheng, C. M. Tsao and Y. J. Yang, “A novel highly-twistable tactile sensing array using extendable spiral electrodes,” 22nd IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2009), pp. 92-95, 2009.
[55]曹展謀, "應用於仿生機器人之可高度伸展的觸覺感測陣列," 國立台灣大學碩士論文, 2009.
[56]C. H. Hu, C. H. Liu, L. Z. Chen, Y. C. Peng, and S. S. Fan, "Resistance-pressure sensitivity and a mechanism study of multiwall carbon nanotube networks/poly(dimethylsiloxane) composites," Applied Physics Letters, vol. 93, 2008.
[57]林江珍, 林嵩祚, "奈米碳管有機分散性改質與應用," 石油季刊, vol. 4, pp. 47-59, 2005.
[58]A. Hirsch and O. Vostrowsky, "Functionalization of carbon nanotubes," Functional Molecular Nanostructures, vol. 245, pp. 193-237, 2005.
[59]S. Banerjee, T. Hemraj-Benny, and S. S. Wong, "Covalent surface chemistry of single-walled carbon nanotubes," Advanced Materials, vol. 17, pp. 17-29, 2005.
[60]J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, "Fullerene pipes," Science, vol. 280, pp. 1253-1256, 1998.
[61]J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon, "Solution properties of single-walled carbon nanotubes," Science, vol. 282, pp. 95-98, 1998.
[62]J. Lee, M. Kim, C. K. Hong, and S. E. Shim, "Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents," Measurement Science & Technology, vol. 18, pp. 3707-3712, 2007.
[63]T. H. Hu, H. L. Xie, L. Chen, G. Q. Zhong, and H. L. Zhang, "Preparation and orientation behavior of multi-walled carbon nanotubes grafted with a side-chain azobenzene liquid crystalline polymer," Polymer International, vol. 60, pp. 93-101, 2011.
[64]Y. P. Sun, K. F. Fu, Y. Lin, and W. J. Huang, "Functionalized carbon nanotubes: Properties and applications," Accounts of Chemical Research, vol. 35, pp. 1096-1104, 2002.
[65]H. T. Ham, C. M. Koo, S. O. Kim, Y. S. Choi, and I. J. Chung, "Chemical modification of carbon nanotubes and preparation of polystyrene/carbon nanotubes composites," Macromolecular Research, vol. 12, pp. 384-390, 2004.
[66]H. R. Aghabozorg, S. S. Kish, and A. M. Rashidi, "Solubility of functionalized carbon nanotubes in different solvents," Journal of Applied Chemical Researches, vol. 3, pp. 29-33, 2010.
[67]T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, "Amino-functionalized carbon nanotubes for binding to polymers and biological systems," Chemistry of Materials, vol. 17, pp. 1290-1295, 2005.
[68]N. Choi, M. Kimura, H. Kataura, S. Suzuki, Y. Achiba, W. Mizutani, and H. Tokumoto, "Effect of amines on single-walled carbon nanotubes in organic solvents: Control of bundle structures," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, pp. 6264-6266, 2002.
[69]J. D. Shen, W. S. Huang, L. P. Wu, Y. Z. Hu, and M. X. Ye, "Study on amino-functionalized multiwalled carbon nanotubes," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 464, pp. 151-156, 2007.
[70]K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, "Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes," Journal of Physical Chemistry B, vol. 104, pp. 8911-8915, 2000.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top