跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/20 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佑安
研究生(外文):Yu-An Chen
論文名稱:微流體晶片應用於精子濃度、活動力與運動之研究
論文名稱(外文):Analysis of Sperm Concentration, Motility, and Kinetics in A Microfluidic Chip
指導教授:胡文聰胡文聰引用關係
指導教授(外文):Andrew M. Wo
口試委員:謝汝敦張宏江李雨蔡芳生
口試日期:2010-07-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:77
中文關鍵詞:微流體精子庫爾特原理
外文關鍵詞:MicrofluidicsspermCoulter principle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:540
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
精子品質為男性生育能力檢測的首要項目。現今多數男性需至醫療院所方可檢測自身精子品質,一般市售家用精子品質檢測商品多為定性結果顯示,或利用簡易顯微鏡觀察,尚有改進之處。本論文提出一以微流體技術為基礎之精子品質檢測晶片,可用於量化精子品質,而此量化指標以精子濃度與活動力為主。此二指標為精子品質指標中主要參考依據。本晶片中產生一流場,置於流場下游端的精子逆游進入流道,經一段距離後由一感測器計數。此感測器計數在一固定檢測時間內,游過微流道之精子數目。此數目即與精子濃度與活動力有關。實驗結果與現行醫院使用精子品質檢測方法與儀器比較,實驗控制組包含以顯微鏡觀察計數活動精子濃度與精子品質分析儀(Sperm Quality Analyzer)。結果顯示晶片量化精子品質由0至335,相對應顯微鏡量化之活動精子濃度由0至19×106/毫升,而精子品質分析儀之數值(Sperm Motility Index)由0至204。結果顯示本晶片檢測結果確實與傳統既有方法呈現一正相關,驗證本設計之可行性。
本論文另一部份為利用上述感測器之原理(阻抗突波技術,resistive pulse technique)量測精子運動。利用量測精子通過一微小流道時阻抗之變化,可量測精子體積大小、游動速度、擺動頻率。實驗結果與影像分析方式比較,驗證本量測方式可確實測量精子通過微小流道的時間與其擺動次數,進而求得游動速度與擺動頻率。相較於既有精子運動量測儀器—電腦輔助精子分析(Computer Aided Sperm Analysis),本方式提供更便宜更簡易量測方法。


A home-use device that allows rapid and quantitative sperm quality analysis is desirable but not yet fully realized. To aid this effort, this thesis presents a microfluidic device capable of quantifying sperm quality in terms of two critical fertility-related parameters — motile sperm concentration and motility. The microdevice produces flow field and sperms that overcame the flow within a specified time are propelled along in a separate channel and counted via resistive pulse technique. Results are compared to two control methods clinically utilized for sperm quality exam – hemocytometer and the sperm quality analyzer – and the numbers of pulses generated by passage of sperms in the device suggests strong correlation with two controls: pulse number of 0 to 335 corresponds to progressively motile sperm concentrations from 0 to 19×106/ml (hemocytometer) and Sperm Motility Index from 0 to 204 (sperm quality analyzer). The microdevice should be applicable to facilitate self assessment of sperm quality at home.
Furthermore, features of sperm motion such as beat frequency and swimming velocity are characterized via resistive pulse technique in a microfluidic chip. The effect of shape and orientation of aspheric particles on resistance of aperture was utilized to measure of motion of human spermatozoa. By measuring the voltage drop across an aperture when a sperm passes, the height of induced pulse can be directly related to the sperm volume, the duration inversely proportional to swim velocity, and the undulation of voltage on top of pulse correlates with sperms’ beat frequency. In comparison with control method of sperm motion quantified under a microscope, experimental results confirm that sperm characteristics can be accurately measured through resistive pulse technique. Different from image based approach, the proposed method provides another tool for quantifying these sperm characteristics based on electrical detection.


中文摘要 I
Abstract II
謝 辭 III
圖表目錄 IV
Contents V
1. Introduction 1
2. Material and methods 5
2.1. Configuration of microfluidic sperm chips 5
2.1.1. Conceptual design: male fertility screening in terms of sperm concentration and motility 5
2.1.2. Geometry of aperture for characterization of sperm motion 12
2.2. Fabrication of microfluidic chip 14
2.3. Sperm and buffer solution 15
2.4. Experimental procedures 17
3. Results and discussion 19
3.1. Quantification of sperm quality in terms of concentration and motility 19
3.1.1. Visualization and characterization of flow field 19
3.1.2. Interaction of sperm with channel geometry 20
3.1.3. Typical pattern of time course voltage recording 22
3.1.4. Comparison with two benchmarks 24
3.2. Envisioned home use sperm quality test kit 28
3.2.1. Disposable consumables and reader 29
3.2.2. Architecture of the reader 30
3.2.3. Demonstration of the reader 31
3.3. Characterization of sperm motion 32
3.3.1. Analytical and numerical approximation of voltage drop across the aperture 35
3.3.2. Sperm motion characterized via an aperture of straight channel 42
3.3.3. Geometrical and electrical influences on characterization of sperm motion via resistive pulse technique 46
4. Conclusions 49
Appendix A: dynamic monitoring of two sperms clogged at nozzle-diffuser aperture 51
Appendix B: Numerical analysis of effect of sperm vibration on bell shaped pulse 54
Appendix C: Publication 64
Reference 74


[1]G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, "Soft lithography in biology and biochemistry," Annual Review of Biomedical Engineering, vol. 3, pp. 335-373, 2001.
[2]D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Annual Review of Biomedical Engineering, vol. 4, pp. 261-286, 2002.
[3]B. S. Lee, J. N. Lee, J. M. Park, J. G. Lee, S. Kim, Y. K. Cho, and C. Ko, "A fully automated immunoassay from whole blood on a disc," Lab on a Chip, vol. 9, pp. 1548-1555, 2009.
[4]Y. C. Toh, T. C. Lim, D. Tai, G. Xiao, D. V. Noort, and H. Yu, "A Microfluidic 3D Hepatocyte Chip for Drug Toxicity Testing," Lab on a Chip, vol. 9, pp. 2026-2035, 2009.
[5]C. M. Lin, Y. S. Lai, H. P. Liu, C. Y. Chen, and A. M. Wo, "Trapping of Bioparticles via Microvortices in a Microfluidic Device for Bioassay Applications," Analytical Chemistry, vol. 80, pp. 8937-8945, 2008.
[6]N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, and R. Guerrieri, "A CMOS chip for individual cell manipulation and detection," IEEE Journal of Solid-State Circuits, vol. 38, pp. 2297-2305, 2003.
[7]C. Y. Chen, T. Y. Tu, C. H. Chen, D. S. Jong, and A. M. Wo, "Patch Clamping on Plane Glass—Fabrication of Hourglass Aperture and High-yield Ion Channel Recording," Lab on a Chip, 2009.
[8]C. Ionescu-Zanetti, R. M. Shaw, J. G. Seo, Y. N. Jan, L. Y. Jan, and L. P. Lee, "Mammalian electrophysiology on a microfluidic platform," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 9112-9117, 2005.
[9]X. H. Li, K. G. Klemic, M. A. Reed, and F. J. Sigworth, "Microfluidic system for planar patch clamp electrode arrays," Nano Letters, vol. 6, pp. 815-819, 2006.
[10]S. Koyama, D. Amarie, H. A. Soini, M. V. Novotny, and S. C. Jacobson, "Chemotaxis assays of mouse sperm on microfluidic devices," Analytical Chemistry, vol. 78, pp. 3354-3359, 2006.
[11]M. D. C. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, "Sperm motion in a microfluidic fertilization device," Biomedical Microdevices, vol. 10, pp. 709-718, 2008.
[12]G. D. Smith and S. Takayama, "Gamete and embryo isolation and culture with microfluidics," Theriogenology, vol. 68, pp. S190-S195, 2007.
[13]R. Suh, S. Takayama, and G. D. Smith, "Microfluidic applications for andrology," Journal of Andrology, vol. 26, pp. 664-670, 2005.
[14]R. S. Suh, X. Y. Zhu, N. Phadke, D. A. Ohl, S. Takayama, and G. D. Smith, "IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm," Human Reproduction, vol. 21, pp. 477-483, 2006.
[15]M. B. Wheeler, E. M. Walters, and D. J. Beebe, "Toward culture of single gametes: The development of microfluidic platforms for assisted reproduction," Theriogenology, vol. 68, pp. S178-S189, 2007.
[16]B. S. Cho, T. G. Schuster, X. Y. Zhu, D. Chang, G. D. Smith, and S. Takayama, "Passively driven integrated microfluidic system for separation of motile sperm," Analytical Chemistry, vol. 75, pp. 1671-1675, 2003.
[17]K. M. Horsman, S. L. R. Barker, J. P. Ferrance, K. A. Forrest, K. A. Koen, and J. P. Landers, "Separation of sperm and epithelial cells in a microfabricated device: Potential application to forensic analysis of sexual assault evidence," Analytical Chemistry, vol. 77, pp. 742-749, 2005.
[18]T. G. Schuster, B. S. Cho, L. M. Keller, S. Takayama, and G. D. Smith, "Isolation of motile spermatozoa from semen samples using microfluidics," Reproductive BioMedicine Online, vol. 7, pp. 75-81, 2003.
[19]D. B. Seo, Y. Agca, Z. C. Feng, and J. K. Critser, "Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure," Microfluidics and Nanofluidics, vol. 3, pp. 561-570, 2007.
[20]B. Shao, L. Z. Shi, J. M. Nascimento, E. L. Botvinick, M. Ozkan, M. W. Berns, and S. C. Esener, "High-throughput sorting and analysis of human sperm with a ring-shaped laser trap," Biomedical Microdevices, vol. 9, pp. 361-369, 2007.
[21]J. M. Wu, Y. K. Chung, K. J. Belford, G. D. Smith, S. Takayama, and J. Lahann, "A surface-modified sperm sorting device with long-term stability," Biomedical Microdevices, vol. 8, pp. 99-107, 2006.
[22]L. J. Kricka, I. Faro, S. Heyner, W. T. Garside, G. Fitzpatrick, G. McKinnon, J. Ho, and P. Wilding, "Micromachined analytical devices: Microchips for semen testing," Journal of Pharmaceutical and Biomedical Analysis, vol. 15, pp. 1443-1447, 1997.
[23]L. J. Kricka, O. Nozaki, S. Heyner, W. T. Garside, and P. Wilding, "Application of a microfabricated device for evaluating sperm function," Clinical Chemistry, vol. 39, pp. 1944-1947, 1993.
[24]M. C. McCormack, S. McCallum, and B. Behr, "A novel microfluidic device for male subfertility screening," Journal of Urology, vol. 175, pp. 2223-2227, 2006.
[25]H. Bayley and C. R. Martin, "Resistive-Pulse Sensing From Microbes to Molecules," Chemical Reviews, vol. 100, pp. 2575-2594, 2000.
[26]R. W. Lines, Particle Size Analysis. Cambridge: The Royal Society of Chemistry, 1992.
[27]R. W. DeBlois, C. P. Bean, and R. K. A. Wesley, "Electrokinetic Measurements with Submicron Particles and Pores by Resistive Pulse Technique," Journal of Colloid and Interface Science, vol. 61, pp. 323-335, 1977.
[28]T. Ito, L. Sun, and R. M. Crooks, "Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based coulter counter," Analytical Chemistry, vol. 75, pp. 2399-2406, 2003.
[29]T. Ito, L. Sun, R. R. Henriquez, and R. M. Crooks, "A carbon nanotube-based Coulter nanoparticle counter," Accounts of Chemical Research, vol. 37, pp. 937-945, 2004.
[30]R. W. DeBlois and C. P. Bean, "Counting and Sizing of Submicron Particles by the Resistive Pulse Technique," Review of Scientific Instruments, vol. 41, pp. 909-916, 1970.
[31]J. Hurley, "Sizing Particles with a Coulter Counter," Biophysical Journal, vol. 10, pp. 74-79, 1970.
[32]O. A. Saleh and L. L. Sohn, "Direct detection of antibody-antigen binding using an on-chip artificial pore," Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 820-824, 2003.
[33]A. Drochon, "Use of cell transit analyser pulse height to study the deformation of erythrocytes in microchannels," Medical Engineering & Physics, vol. 27, pp. 157-165, 2005.
[34]D. C. Golibersuch, "Observation of Aspherical Particle Rotation in Poiseuille Flow Via the Resistance Pulse Technique .ll. Application to Fused Sphere Dumbbells," Journal of Applied Physics, vol. 44, pp. 2580-2584, 1973.
[35]D. C. Golibersuch, "Observation of Aspherical Particle Rotation in Poiseuille Flow Via the Resistance Pulse Technique: I. Application to Human Erythrocytes," Biophysical Journal, vol. 13, pp. 265-280, 1973.
[36]N. B. Grover, J. Naaman, Bensasso.S, and Doljansk.F, "Electrical Sizing of Particles in Suspensions .I. Theory," Biophysical Journal, vol. 9, pp. 1398-&, 1969.
[37]G. V. Richieri, S. P. Akeson, and H. C. Mel, "Measurement of Biophysical Properties of Red Blood-Cells by Resistive Pulse Spectroscopy - Volume, Shape, Surface-Area, and Deformability," Journal of Biochemical and Biophysical Methods, vol. 11, pp. 117-131, 1985.
[38]C. S. Waterman, E. E. Atkinson, B. Wilkins, C. L. Fischer, and S. L. Kimzey, "Improved Measurement of Erythrocyte Volume Distribution by Aperture-Counter Signal Analysis," Clinical Chemistry, vol. 21, pp. 1201-1211, 1975.
[39]L. I. Berge, J. Feder, and T. Jossang, "A Novel Method to Study Single-Particle Dynamics by the Resistive Pulse Technique," Review of Scientific Instruments, vol. 60, pp. 2756-2763, 1989.
[40]L. I. Berge, J. Feder, and T. Jossang, Particle Size Analysis. Cambridge: The Royal Society of Chemistry, 1992.
[41]S. T. Mortimer and D. Mortimer, "Kinematics of Human Spermatozoa Incubated under Capacitating Conditions," Journal of Andrology, vol. 11, pp. 195-203, 1990.
[42]L. M. King, D. R. Holsberger, and A. M. Donoghue, "Correlation of CASA velocity and linearity parameters with sperm mobility phenotype in turkeys," Journal of Andrology, vol. 21, pp. 65-71, 2000.
[43]L. I. Berge, T. Jossang, and J. Feder, "Off-Axis Response for Particles Passing through Long Apertures in Coulter-Type Counters," Measurement Science & Technology, vol. 1, pp. 471-474, 1990.
[44]O. A. Saleh and L. L. Sohn, "Correcting off-axis effects in an on-chip resistive-pulse analyzer," Review of Scientific Instruments, vol. 73, pp. 4396-4398, 2002.
[45]W. R. Smythe, "Off-Axis Particles in Coulter Type Counters," Review of Scientific Instruments, vol. 43, pp. 817-&, 1972.
[46]C. Martinez, C. Mar, M. Azcarate, P. Pascual, J. M. Aritzeta, and A. Lopez-Urrutia, "Sperm motility index: a quick screening parameter from sperm quality analyser-IIB to rule out oligo- and asthenozoospermia in male fertility study," Human Reproduction, vol. 15, pp. 1727-1733, 2000.
[47]D. T. Stephens, T. S. Acott, and D. D. Hoskins, "A Cautionary Note on the Determination of Forward Motility Protein-Activity with Bovine Epididymal Spermatozoa," Biology of Reproduction, vol. 25, pp. 945-949, 1981.
[48]P. Horowitz and W. Hill, The Art of Electronics, 2 ed. New York: Press Syndicate of the University of Cambridge, 1989.
[49]J. A. Osborn, "Demagnetizing Factors of the General Ellipsoid," Physical Review, vol. 67, pp. 351-357, 1945.
[50]U. Engelmann, F. Krassnigg, H. Schatz, and W. B. Schill, "Separation of Human X-Spermatozoa and Y-Spermatozoa by Free-Flow Electrophoresis," Gamete Research, vol. 19, pp. 151-159, 1988.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top